Xic Reference Manual
With OpenAccess Support

Whiteley Research Incorporated
Sunnyvale, CA 94086

Release 4.3.14
February 9, 2025

(© Whiteley Research Incorporated, 2025.

Xic is part of the XicTools software package for integrated circuit design. Xic was primarily
authored by S. R. Whiteley, Whiteley Research inc., Sunnyvale CA USA.

Xic, and the entire XicTools suite, including this manual, is provided as open-source under
the Apache-2.0 license, as much as applicable per individual tools, some of which are GNU-
licensed.

Xic and subsidiary programs and utilities are offered as-is, and the suitability of these pro-
grams for any purpose or application must be established by the user as Whiteley Research,
Inc. does not imply or guarantee such suitability.

ii

This page intentionally left blank.

Contents

1 Introduction to Xic 1
1.1 Xic Graphical Editor Overview e 1
1.2 Xic Feature Sets L 3

1.2.1 The EDITOR Feature Set 3
1.2.2 The VIEWER Feature Set 4
1.3 A Quick Tour of Xic Capabilities 6
1.3.1 History of Xic 6
1.3.2 General oL 6
1.3.3 The Help System 6
1.34 Cadence Virtuoso and OpenAccess Compatibility 7
1.3.5 Layout Editing L e 7
1.3.6 Input/Output 7
1.3.7 Design Rule Checking L 8
1.3.8 Electrical Mode L 8
1.3.9 Extraction 9
1.3.10 Automation 9
1.4 A Quick Tour of the XicMenus 10
14.1 Side Button Menu L 10
1.4.2 Top Button Menu L 10
1.4.3 File Menu e 10
144 Cell Menu e 11
1.4.5 Edit Menu e 11
1.4.6 Modify Menu 11
1.4.7 View Menu o L 12
1.4.8 Attributes Menu 12
1.4.9 Convert Menu 12
1.410 DRCMenu. i 13
1.4.11 Extract Menu L 13
1.4.12 User Menu 14
1.5 Database Overview 14

iii

iv CONTENTS
1.5.1 Cell Hierarchy Digest 15

1.5.2 Database Resolution 15

2 Xic Configuration and Startup 17
2.1 Graphics Support e 17
2.2 Apple macOS Notes e 18
2.2.1 Package Installation oo o 18

2.2.2 Installation from Source 19

2.2.3 Un-Installation 19

2.24 Running the Applications 19

2.2.5 MacBook Keyboard Mapping Issues 19

2.2.6 The Alt Key Issue oo o 20

2.3 Microsoft Windows Notes 21
2.3.1 Installation and Setup Lo 21
Installing MSYS2 22

The mintty Terminal Emulator Window 22

2.3.2 General Notes 24

2.3.3 Setting Environment Variables 25

24 Command Line Options 26
2.5 Xic Environment Variables o 30
2.5.1 Unix/Linuxo e 30

2.5.2 Microsoft Windows 30

2.5.3 XicTools Environment Variables 31

2.5.4 Xic Environment Variables o0 oL 32

2.6 Xic Search Paths L 35
2.7 Redirect Files e 38
2.8 Initialization Files oL 38
2.9 Log Files and Error Reporting o o 40
2.9.1 Log Files o . o e 41

2.9.2 Abnormal Termination Logging 43

2.10 Plug-Ins o e 43
2.11 OpenAccess SUPPOTt o o v e e 44
2.11.1 Representing Xic Cells in OpenAccess oo .. 45

2.12 Python Support 46
213 Tcl/Tk Support o 48
3 Graphical Interface, Commands and Operations 53
3.1 Prompt Line o e 95

3.1.1 Prompt Line Editing o o 55

CONTENTS v

3.1.2 Hypertext o e 58

3.1.3 Proxy Windows 59

3.2 Keypress Buffer 60
3.3 Quoting e e 60
3.4 Menu Selection and Accelerators L Lo 61
3.5 Keyboard Input e 62
3.6 Pointing Device L 67
3.6.1 Basic Selection Operation 68

3.6.2 Basic Move/Copy Operation 70

3.6.3 Basic Stretch Operation 71

3.6.4 Additional Notes 71

3.6.5 Button 2 Operations L 72

3.6.6 Button 3 Operations 72

3.6.7 Button 4 e 73

3.6.8 Mouse Wheel 73

3.7 The WR Button: Email Client 73
3.8 Top Button Menu e 74
3.8.1 The Isrch Button and Entry: Find Layer and Set Current 75

3.8.2 The 1tvis Button: Show/Hide Layer Table 75

3.8.3 The Ipal Button: Show/Hide Layer Palette 75

3.8.4 The setcl Button: Set Current Layer from Clicked-On Object 76

3.8.5 The selcp Button: Show/Hide Selection Control Panel 76

3.8.6 The desel button: Deselect Objects 78

3.8.7 The rdraw button: Redraw Windows 78

3.8.8 Coordinates Display 78

3.9 Main Drawing Window L e 78
3.10 XicLayers. o e 79
3.11 Layer Table o e 80
3.12 Status Display 82
3.13 Text Entry Windows L e 83
3.13.1 Single-Line Text Entry oo 83

3.13.2 The Text Editor 83

3.13.3 Selections and Clipboards 85

3.13.4 GTK Text Input Key Bindings 86

4 Using Xic 87
4.1 Physical Layout Editing 88
4.2 Electrical Schematic Editing o o 89

vi

CONTENTS

4.2.1 Placement of Devices and Subcircuits 0L 90

4.2.2 Semiconductor Devices L 91

4.2.3 Wiring Devices and Subcircuits oL oo 93

4.2.4 Adding Properties to Devices Lo 94

4.2.5 Creating Subcircuits L o 95

4.2.6 Node and Device Naming 96

4.2.7 Connectivity Overview 97

4.2.8 Net and Vector Expressions oo 99

4.2.9 Vectored Instances L L 101

4.2.10 Connection Rules 101

4211 Tap Wires oo e e e 102

4.2.12 Generating Output and Running Simulations 102

4.3 Cell Organization and Libraries. o 103
4.4 Batch Mode e 104
4.5 Server Mode L 107
4.5.1 The Response Message Format 111

4.5.2 Operation 112
Parameterized Cells and Vias 115
5.1 Parameterized Cells 115
5.1.1 How PCells Worko 115

5.1.2 PCell History and Status 116

5.1.3 Xic Native PCells o e 117

5.1.4 Creation of a Native Parameterized Cell 121

5.1.5 Adding an Instance of a Parameterized Cell 123

5.1.6 Changing the Parameters of an Instance 124

5.1.7 Changing the Parameters of a Sub-Master 124

5.2 Parameter Constraints 124
5.3 Parameters Panel: Set PCell Parameters 127
5.4 PCell Stretch Handles 129
5.5 PCell Abutment e 131
5.6 Synopsys (Ciranova) PyCell Studio L 133
5.6.1 Connecting to PyCell Studio 133

5.7 Cadence™ Compatibilityo 135
5.7.1 The Lisp Parser o o e 136

5.7.2 The ReadDRF keyword 138

5.7.3 The ReadCdsTech keyword 139

5.74 The Read0aTech keyword 145

CONTENTS

5.7.5 The ReadCdsLmap keyword

5.7.6 Connecting to Cadence Installations
Compatibility and Setup

Express PCells o

5.7.7 Importing a Design from Virtuoso

5.8 Standard Vias L
5.8.1 The Standard Via Property String

6 The Help Menu: Obtain Program Documentation

6.1 The Help Button: Obtain Help
6.1.1 XicTools Update o e

6.1.2 The HTML Viewer e

6.1.3 The Help Database

6.1.4 Help System Forms Processing

6.1.5 Help System Initialization Fileo ..

6.2 The Multi-Window Button: Set Multi-Window Help Mode
6.3 The About Button: Program and Legal Info
6.4 The Release Notes Button: View Release Notes
6.5 The Log Files Button: Access Log Files
6.6 The Logging Button: Set Logging and Debugging Options

7 The Side Menu: Geometry Creation

7.1 The arc Button: Create Arcs o i e
7.2 The box Button: Create Rectangles
7.3 The break Button: Cut Objects
7.4 The deck Button: Save SPICE File
7.5 The devs Button: Device Menu L
7.5.1 Terminal Devices
Ground Device L

Alternative Ground Device

Terminal Device Lo

Bus Terminal Device

7.5.2 SPICE Devices o oo it
Resistor Device L

Capacitor Device

Inductor Device L

Mutual Inductor

Current Sourceo

Voltage Source L e

vii

145
146
146
147
148
150
151

153
153
155
155
160
161
161
161
162
162
162
162

viii

7.6
7.7
7.8
7.9

7.10

7.11
7.12

CONTENTS

Current Meter L 174
Junction Diode Lo 174
Josephson Junction L 175
NPN Bipolar Transistor o 175
PNP Bipolar Transistor 175
N-Channel Junction FET 175
P-Channel Junction FET 0. 175
N-Channel MOSFET, 4 Nodes 175
P-Channel MOSFET, 4 Nodes 176
N-Channel MOSFET, 3 Nodes 176
P-Channel MOSFET, 3 Nodes 176
N-Channel MESFET 176
P-Channel MESFET 176
Transmission Line L Lo 177
Transmission Line (LTRA compatibility) 177
Uniform RC Line o 177
Voltage-Controlled Current Source 177
Voltage-Controlled Voltage Source 177
Current-Controlled Current Source 177
Current-Controlled Voltage Source 178
Voltage-Controlled Switch L. 178
Current-Controlled Switch 178
Example Opamp Macro 178
The donut Button: Create Donut Object, 178
The erase Button: Erase or Yank Geometry 179
The iplot Button: Interactive Analysis Plotting 180
The label Button: Create/Edit Labels 181
7.9.1 Device Property Labels oo 182
7.9.2 Wire Net Name Labels oo oo oo 182
7.9.3 Ctrl-aand Ctrl-p o 182
7.9.4 Spicetext Labels 183
7.9.5 “Long Text” Capability 183
7.9.6 Script Labels 184
7.9.7 Label Size Issues 185
The logo Button: Create Physical Text 186
7.10.1 The Logo Font Setup Panel 187
The nodmp Button: Node (Net) Name Assignments 188
The Place Button: Cell Placement Control Panel 192

CONTENTS ix

7.13 The plot Button: Generate SPICE Plot 195
7.14 The polyg Button: Create/Edit Polygons 196
7.14.1 Polygon Vertex Editing 197

7.14.2 Wire to Polygon Conversion 198

7.15 The put Button: Extract From Yank Buffer, ... 198
7.16 The round Button: Create Disk Object, 199
7.17 The run Button: Run SPICE Analysis 199
7.18 The shapes Button: Add Predefined Features 201
7.19 The sides Button: Set Rounded Granularity 202
7.20 The spcmd Button: Execute WRspice Command 202
7.20.1 The WRspice Interface Control Panel 203

7.21 The spin Button: Rotate Objects 205
7.22 The style Button: Set/Change Wire Style 206
7.23 The subct Button: Set Subcircuit Connections 206
7.23.1 Virtual Terminals L 207

7.23.2 Multi-Contact Connectors 208

7.23.3 Terminal Ordering L 208

7.23.4 Terminal Naming and Editing 209

7.24 The Terminal Edit Pop-Up: Editing Terminals 210
7.24.1 Electrical Scalar Terminal Editing 210

7.24.2 Physical Terminal Editing oo 212

7.24.3 Multi-Contact Connector Editing 212

7.25 The symbl Button: Symbolic Representation 213
7.26 The terms Button: Show Subcircuit Connections 214
7.27 The wire Button: Create/Edit Wires 214
7.27.1 Wire Vertex Editor 215

7.27.2 Associated Net Name Label 216

7.28 The xform Button: Current Transform Panel 217
7.29 The xor Button: Exclusive-OR Objects, 218
8 The File Menu: Xic Input/Output 219
8.1 The File Select Button: Pop Up File Selection Panel 219
8.2 The Open Button: Open Cellor File 220
8.2.1 Input to the Open Command 220

8.2.2 Reading Input With the Open Command 222

8.2.3 Opening New Cells — Conflict Resolution 223

8.2.4 Object Tests o o o 224

8.2.5 The File Selection Panel 224

X CONTENTS
8.3 The Save Button: Save Modified Cells, 227
8.4 The Save As Button: Save Cell, Renaming 228
8.5 The Save As Device Button: Editing Devices 230
8.6 The Print Button: Print Control Panel 233

8.6.1 Print Control Panel Lo 234

8.6.2 The Format Menu: Hardcopy File Formats 236

8.7 The Files List Button: Path Files Listing Panel 238
8.8 Cell Hierarchy and geometry Digests 239
8.9 The Hierarchy Digests Button: List Cell Hierarchy Digests 240
8.9.1 The Open Cell Hierarchy Panel 244

8.9.2 The Configure Cell Hierarchy Digest Panel 245

8.9.3 Reference Cells o 246
Reference Cell Structure 247

8.9.4 The Cell Table Listing Panel: Set Override Cells 248

8.10 The Geometry Digests Button: List Cell Geometry Digests 250
8.11 The Open Cell Geometry Digest Panel 251
8.12 The Libraries List Button: List Open Libraries 253
8.13 The OpenAccess Libs Button: List OpenAccess Libraries 254
8.14 The OpenAccess Tech Panel 256
8.15 The OpenAccess Defaults Panel 257
8.16 The Quit Button: Exit Xic 258

9 The Cell Menu: Xic Cell Navigation and Information 259
9.1 The Push Button: Push Editing Context 259
9.2 The Pop Button: Pop Context 260
9.3 The Symbol Tables Button: Switch Symbol Table 260
9.4 The Cells List Button: Cell Listing Panel 261

9.4.1 Cells Listing Command Buttons 261
9.4.2 Cell Filtering 265
9.4.3 Cell Flags o o e 269
9.5 The Show Tree Button: Show Cell Hierarchy 271
10 The Edit Menu: Edit Layout 273
10.1 Cell, Instance, and Object Properties 273
10.1.1 Physical Mode Properties 274
10.1.2 Pseudo-Properties 274
10.1.3 Electrical Mode Propertieso 278
10.2 The Enable Editing Button: Enable Cell Editing 279

CONTENTS

10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.10

10.11

The Setup Button: Show Editing Setup Panel
The PCell Control Button: PCell Control Panel
The Create Cell Button: Create New Cell
The Create Via Button: Create Standard Via Variant
The Flatten Button: Flatten Hierarchy
The Join/Split Button: Join or Split Objects
The Layer Expression Button: Evaluate Layer Expression
10.9.1 Examples. e
10.9.2 Extended Layer Names
10.9.3 Advanced Examples
The Properties Button: Property Editor Panel
10.10.1 The Edit Button: Edit Property
10.10.2 The Add Button: Add New property
10.10.3 The Delete Button: Delete Property
The Cell Properties Button: Edit Cell properties

11 The Modify Menu: Modify Geometry

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9

The Undo Button: Undo Operation,
The Redo Button: Redo Last Undo
The Delete Button: Delete Objects,
The Erase Under Button: Erase Under Objects
The Move Button: Move Objects
The Copy Button: Copy Objects
The Stretch Button: Stretch Objects
The Change Layer Button: Change Layer
The Set Layer Chg Mode Button: Set Change Mode for Move/Copy

12 The View Menu: Alter Presentation

12.1
12.2
12.3
12.4

12.5
12.6
12.7
12.8

The View Button: Select Cell View
The Physical Button: Show Physical Mode
The Electrical Button: Show Electrical Mode
The Expand Button: Expand Subcells
1241 Peek Mode
The Zoom Button: Zoom In/Out L 0 ..
The Viewport Button: Create Sub-Window
The Peek Button: Show Layer Composition
Three-Dimensional Layer Sequence Generator

12.8.1 Layer Sequencing e

xi

279
281
282
282
284
285
286
289
289
290
291
293
293
295
296

299
299
300
300
300
300
301
303
304
305

xii CONTENTS
12.9 The Cross Section Button: Show Cross Section 315
12.10 The Rulers Button: Create Rulers 316
12.11 The Info Button: Display Information About Objects 317
12.12 The Allocation Button: Show Memory Allocation 318

13 The Attributes Menu: Set Display Attributes 319
13.1 The Save Tech Button: Update Technology File 320
13.2 The Key Map Button: Create Key Mapping File 320

13.2.1 Key Mapping File 321
13.3 The Define Macro Button: Assign a Macrotoa Key 322
13.3.1 Macro File Format L 323
13.4 The Set Attributes Button: Set Window Attributes 324
13.5 The Connection Dots Button: Show Connections 326
13.6 The Set Font Button: Set Window Fonts 327
13.7 The Set Color Button: Set Colors Panel 328
13.8 The Set Fill Button: Fill Pattern Edit Panel 329
13.9 The Edit Layers Button: Edit Layer Table 332
13.10 The Edit Tech Params Button: Edit Tech Keywords 332
13.11 The Main Window Button: Attributes sub-menu. 335
13.11.1 The Freeze Display Button: Suppress Redisplay 335
13.11.2 The Show Context in Push Button: Control Context Display 336
13.11.3 The Show Phys Properties Button: Show Physical-Mode Properties 336
13.11.4 The Show Labels Button: Control Label Display 336
13.11.5 The Label True Orient Button: Set Label Orientation 336
13.11.6 The Show Cell Names Button: Display Cell Names 337
13.11.7 The Cell Name True Orient Button: Set Cell Name Orientation 337
13.11.8 The Don’t Show Unexpanded Button: Don’t Show Unexpanded Subcells . 337
13.11.9 The Objects Shown Button: Object Display menu 337
13.11.10 The Subthreshold Boxes Button: Outline Tiny Subcells 337
13.11.11 The No Top Symbolic Button: Enforce Schematic View 337
13.11.12 The Set Grid Button: Set Grid Parameters 338

14 The Convert Menu: Data Input/Output, Format Conversion 344
14.1 Feature Availability Table 346
14.2 Cell Name Mapping e 348
14.3 Cell Name Alias File 349
144 Layer Names oL 0 e 350
14.5 Layer Filtering and Aliasing L 352

CONTENTS xiii

14.6
14.7

14.8

14.9

14.10

14.11

14.12

14.13

GDSII Layer Mapping o v v v o e e e e e e e e e 353
The Export Cell Data Button: Export Control Panel 354
14.7.1 GDSII Settings o o o e 355
14.7.2 OASIS Settings 355
14.7.3 CIF Settings o o o o i e e 356
14.7.4 CGX Settings o o 358
14.75 The Setup Page 358
14.7.6 The Write File Page, Exporting Design Data 359
The Advanced OASIS Export Parameters Panel: Set
OASIS Parameters 361
The Import Cell Data Button: Import Control Panel 363
149.1 The Setup Page 363
14.9.2 The Read File Page 366
Windowing Control Module o 367
Windowing L 367
Flattening 368
Empty Cell Filtering 368
The Format Conversion Button: Format Conversion Panel 369
14.11.1 File Format Selection 369
14.11.2 The Setup Page 371
14.11.3 The Convert File Page 372
14.11.4 Generating ASCII Output from Layout Data 374
The Assemble Button: Layout File Merge Tool Panel 375
14.12.1 OVErVIEW . . . o o v o e e e e e 376
14.12.2 The Source Page 377
14.12.3 Layer Filtering Module L 377
14.12.4 Scaling 377
14.12.5 Cell Name Modification 378
14.12.6 Top-Level Cells List 378
14.12.7 Basic Transformations o 379
14.12.8 Advanced Operations 379
14.12.9 Merge Tool Menus e 380
14.12.10 The File Menu o 380
14.12.11 The Options Menu o i 381
14.12.12 The Help Menu o 381
The Compare Layouts Button: Find Differences 382
14.13.1 Comparison Mode Pages L o oo 383

14.13.2 Property List Comparison 384

xiv CONTENTS
14.13.3 Custom Property Filtering 385

14.14 The Cut and Export Button: Export Cell Region 387
14.15 The Text Editor Button: Edit Cell Text 387
15 The DRC Menu: Design Rule Checking 389
15.1 Layer Expressions e 390
15.2 Derived Layers e e e 393
15.3 Built-In Design Ruleso 394
15.3.1 Global Rules 396

15.3.2 AreaRules 397

15.3.3 EdgeRules. 402

15.4 Spacing Tables 411
15.4.1 Spacing Table Evaluation o oL 412

15.5 User-Defined Design Rules 413
15.6 Assigning Design Rules L 419
15.7 The Setup Button: Set DRC Limits 421
15.8 The Set Flags Button: Set Skip Flags 423
15.9 The Enable Interactive Button: Set Interactive Checking 423
15.10 The No Pop Up Errors Button: Suppress Error Report 423
15.11 The Batch Check Button: Initiate Rule Check 424
15.12 The Check In Region Button: Check Objects 425
15.13 The Clear Errors Button: Clear Error List 426
15.14 The Query Errors Button: Print Error Text 426
15.15 The Dump Error File Button: Save Errorsto File 426
15.16 The Update Highlighting Button: Create Highlighting from File 426
15.17 The Show Errors Button: Show Next Error 427
15.18 The Create Layer Button: Create Error Region Layer 427
15.19 The Edit Rules Button: Rule Editor Panel 428
15.19.1 The Design Rule Parameters Panel 429

16 The Extract Menu: Extraction and Verification 434
16.1 Extraction System: Methodology and Overview 435
16.2 Extraction System: Logging and Error Reporting 436
16.3 Extraction System: Operations and Algorithms 436
16.3.1 The Grouping Operation 437

16.3.2 The Extraction Operation 438

16.3.3 The Association Operation 439

16.4 Extraction System: Cell Hierarchy and Flattening 440

CONTENTS XV

16.5
16.6
16.7
16.8

16.9

16.10

16.11
16.12
16.13
16.14
16.15
16.16

16.17

Extraction System: Group/Net Naming 441
Extraction System: Ground Plane Handling 443
Extraction System: Measurement Caching 443
Extraction System: Setup and Configuration 444
16.8.1 Device Blocks 445
16.8.2 Device Templates L 459
16.8.3 Format Library File 460
The Misc Config Button: Misc. Extraction Settings 461
16.9.1 The Views and Operations Page 461
16.9.2 The Net Config Page 464
Via Detection 466
Ground Plane Handling 467
16.9.3 The Device Config Page 468
16.9.4 The Misc Config Page 470
The Net Selections Button: Path Selection Control Panel 471
16.10.1 Resistance Measurement L L oo 475
The Device Selections Button: Show/Select Devices 475
The Source SPICE Button: Update From SPICE File 477
The Source Physical Button: Update Electrical From Physical 480
The Dump Phys Netlist Button: Dump Physical Netlist 481
The Dump Elec Netlist Button: Dump Electrical Netlist 483
The Dump LVS Button: Test Layout vs. Schematic 484
16.16.1 Parameterization Limitation oL, 485
16.16.2 Using the nophys Property o 485
16.16.3 LVS Output File Format 486
Conductor group and electrical node mapping 487
Formal terminal group associations 487
Physical device associations oL 0oL 488
Physical subcircuit associationso oL 488
Checking for unconnected physical subcircuits 488
Checking per-group/node terminal references 488
Summaryo e e 489
The Extract C Button: Capacitance Extraction 489
16.17.1 The Capacitance Extraction Interface 489
Geometry Construction 490
Technology File Setup 491
Output File 492

16.17.2 The Cap Extraction Panel 493

xvi CONTENTS
The Run Page 493

The Params page e 495

The Jobs page 496

16.18 The Extract LR Button: Inductance/Resistance Extraction 496
16.18.1 The Inductance/Resistance Extraction Interface 496
Geometry Construction Lo 497

Terminal Definition 498

Technology File Setup 500

Output File o 501

Tipsand Hintso 502

16.18.2 The LR Extraction Panel oo 502

The Run Page 502

The Params page o . L e 504

The Jobs page e 505

17 The User Menu: User Commands and Xic Scripts 507
17.1 Example Scripts in User Menu L 508
17.2 Script Menus: User-Defined Sub-Menus, 509
17.3 Script Libraries: Code Sharing 511
17.4 Encrypted Scriptso 511
17.5 The Debug Button: Enter Script Debugger 513
17.6 The Rehash Button: Rebuild User menu 516
18 The Xic Scripting Language 517
18.1 The Macro Preprocessor L L e 517
18.1.1 Predefined Macros L 517

18.1.2 Generic Macro Keywords L 519

18.2 Imtroduction to Xic Scripts L L 521
18.3 The Scripting Language e 522
18.4 Error Reporting L 523
185 Data Types o o o e 523
18.5.1 Scalars 524

18.5.2 Strings e e 525

18.5.3 Arrays 526
Declaring and Defining Arrays oo 526

Initialization Lo 526

Dynamic Resizing Lo 527

Pointers 528

18.5.4 Complex e 529

CONTENTS xvii

18.5.5 Handles e 530

18.5.6 Zoidlists 530

18.5.7 Lexpers. o 531

18.6 Math Operators 531
18.6.1 Operator Overloading 532

String Overloads 532

Array Overloads 533

Handle Overloads 533

Zoidlist Overloads 533

18.7 Control Structures 534
18.7.1 delete L e 534

18.7.2 return L e 534

18.7.3 if, elif, else e e e 535

18.7.4 ternary conditional L L L 536

18.7.50 repeat e 536

18.7.6 while e 537

18.7.7 dowhile e 537

18.7.8 break. L 537

18.7.9 continuel 537
18.7.10 goto, label. 538

18.8 “Preprocessor” Directives 538
18.9 Math Functions oL 539
18.10 User-Defined Functions 541
18.11 The exec Keyword — Immediate Execution 542
18.12 Static and Global Variables Lo 543
18.13 Predefined Constants 544
18.14 HTML Forms and Scripts o 0ot 544
18.14.1 Imntroduction to HTML Forms 545
18.14.2 Interfacing Forms to Xic Scripts oL 549

18.15 Example Script L 551
19 Keyboard ‘!’ Commands 553
19.1 Compression oo i e e 558
19.1.1 The !gzip Command: Compress Files. 558

19.1.2 The !gunzip Command: Uncompress Files 558

19.1.3 The !md5 Command: Print File Digest 558

19.2 Create Output L 559

19.2.1 The !sa Command: Save Modified Cells 559

xviil

19.3

19.4

19.5

19.6

19.7

CONTENTS

19.2.2 The !sqdump Command: Save Selections as Native Cell 559
19.2.3 The !assemble Command: Merge Archives 559

File and Option Argument Format 560

Header Block 560

Source Blocks 561

Source Block Directives L o 562

Placement Blocks 564

Placement Block Directives Lo 565
19.2.4 The !splwrite Command: Split an Archive 567
Current Directory L e e 569
19.3.1 The !ed Command: Change Directory 569
19.3.2 The !pwd Command: Print Directory 569
Diagnostics oL e 569
19.4.1 The !time Command: Show Elapsed Time 569
19.4.2 The !timedbg Command: Show Internal Run Times 570
19.4.3 The !xdepth Command: Show Transform Depth 570
19.4.4 The !bincnt Command: Database Object Allocation 570
19.4.5 The !netxp Command: Check Net Expression 571
19.4.6 The !'pcdump Command: Dump Parameterized Cell Data 571
Design Rule Checking 571
19.5.1 The !showz Command: Show DRC Test Areas 571
19.5.2 The !errs Command: Regenerate DRC Error Highlighting 571
19.5.3 The !errlayer Command: Create Error Polygons 571
Electrical e 572
19.6.1 The !calc Command: Calculate Parameter Expression 572
19.6.2 The !check Command: Database Consistency Check 572
19.6.3 The !regen Command: Regenerate Labels 572
19.6.4 The !devkeys Command: Print Device keys 573
Extraction L 573
19.7.1 The !antenna Command: Check MOS Antenna Effect 573
19.7.2 The !netext Command: Batch Physical Net Extraction 574

Stage 1 o 574

Stage 2 . . . L L 575

Stage 3 575

Command Arguments Lo 575
19.7.3 The !'addcells Command: Add Missing Cells 577
19.7.4 The !find Command: Find Devices 577

19.7.5 The !ptrms Command: Default Terminal Locations 578

CONTENTS

19.8

19.9

19.10

19.11

19.12

19.13

19.7.6
19.7.7
19.7.8

Graphics

19.8.1
19.8.2

19.10.1
19.10.2
19.10.3
19.10.4

Keyboard

19.11.1

Layout Editing

19.13.1
19.13.2

19.13.3
19.13.4
19.13.5
19.13.6
19.13.7
19.13.8
19.13.9
19.13.10
19.13.11
19.13.12
19.13.13
19.13.14

The
The
The

lushow Command: Show Unassociated Elements

!fc Command: Control Capacitance Extraction Interface

'fh Command: Control Inductance/Resistance Extraction Interface
The
The

Isetcolor Command: Set Attribute Colors

!display Command: Export Rendering

!sg Command: Save Grid in Register

!rg Command: Set Grid From Register

The
The
The
The

'help Command: Help Interface
'helpfont Command: Set Help Font
'helpfixed Command: Set Help Fixed Font
'helpreset Command: Clear Help Cache

The

tab Command: Modify Layer Table
Ttsort Command: Alphanumerically Sort Layer Table

The

lexlayers Command: List layers by Applied Keywords

The !array Command: Manipulate Instance Arrays

The 'layer Command: Generate Layers

Extended Layer Names

Advanced Examples
The !'mo Command: Move Objects
The !co Command: Copy Objects
The
The
The
The
The
The
The
The
The

The

!spin Command: Rotate Objects

Irename Command: Rename Cells

!svqg Command: Save Selections in Register

'rcq Command: Recall Selections from Register

!box2poly Command: Object Type Conversion

!path2poly Command: Outline to Polygon Conversion
!poly2path Command: Polygon to Outline Conversion

!bloat Command: Expand Objects

ljoin Command: Join Touching Objects

!jw Command: Join Wires

Xix

XX

19.14

19.15

19.16

CONTENTS

19.13.15 The !split Command: Atomize Objects 597
19.13.16 The !'manh Command: Convert to Manhattan Polygons 597
19.13.17 The !polyfix Command: Fix Polygon 598
19.13.18 The !polyrev Command: Reverse Polygon Winding 598
19.13.19 The !noacute Command: Eliminate Acute Angles 598
19.13.20 The !togrid Command: Move To Grid 598
19.13.21 The !tospot Command: Modify for Spot Size 599
19.13.22 The !origin Command: Move Cell Origin 600
19.13.23 The !import Command: Import Cell Data 600
Layout Information e 600
19.14.1 The !fileinfo Command: Show File Statistics 600
19.14.2 The !'summary Command: Print Hierarchy Info 601
19.14.3 The !compare Command: Compare Hierarchies. 601

Common Options 602

Per-Cell Object Mode Options 603

Per-Cell Geometry Mode Options 605

Flat Mode Options 605
19.14.4 The !diffcells Command: Create Cells from Comparisons 606
19.14.5 The !empties Command: Check for Empty Cells 606
19.14.6 The !'area Command: Measure Layer Area 606
19.14.7 The !perim Command: Measure Object Perimeter 607
19.14.8 The !bb Command: Print Bounding Box 607
19.14.9 The !checkgrid Command: Mark Off-Grid Vertices. 607
19.14.10 The !checkover Command: Report Subcell Overlap 608
19.14.11 The !check45 Command: Select Non-45 Polys and/or Wires. 608
19.14.12 The !dups Command: Select Coincident Objects 608
19.14.13 The !wirecheck Command: Check Wires 609
19.14.14 The !polycheck Command: Check Polygons. 610
19.14.15 The !polymanh Command: Select Manhattan Polygons 610
19.14.16 The !poly45 Command: Select Non-45 Polygons 610
19.14.17 The !polynum Command: Number Vertices 610
19.14.18 The !setflag Command: Set Internal Cell Flags 611
Libraries and Databases 611
19.15.1 The !mklib Command: Create Library File 611
19.15.2 The !Isdb Command: List Special Databases 612
Markso e 612
19.16.1 The !mark Command: Create User Marks 612

19.17 Memory Management Lo oL 614

CONTENTS xxi

19.18

19.19

19.20

19.21

19.22

19.23

19.24

19.17.1 The !clearall Command: Clear All Memory 614
19.17.2 The !'vmem Command: Windows Virtual Memory Info 614
19.17.3 The !mmstats Command: Show Memory Manager Statistics 614
19.17.4 The !mmclear Command: Clear Recycle Free Lists 614
OpenAccess Interface L 615
19.18.1 The !oaversion Command: Print OpenAccess Release Number 615
19.18.2 The !oadebug Command: Enable Logging 615
19.18.3 The !oanewlib Command: Create New OpenAccess Library 615
19.18.4 The !oabrand Command: Permit Save from Xicin OA Lib 616
19.18.5 The !oatech Command: Query OA Technology Database 616
19.18.6 The !oasave Command: Save Cell to OA Library 617
19.18.7 The !oaload Command: Read Cell from OA Library 618
19.18.8 The !oadelete Command: Delete OpenAccess Object 618
Parameterized Cells 618
19.19.1 The !rmpcprops Command: Remove PCell Properties 618
19.19.2 The !preload Command: Pre-Load PCell Sub-Masters 619
Rulers o o e e 619
19.20.1 The !dr Command: Delete Rulers 619
Scripts . . . e 620
19.21.1 The !script Command: Add Script 620
19.21.2 The !rehash Command: Rebuild User Menu. 620
19.21.3 The !exec Command: Execute a Script 620
19.21.4 The !lisp Command: Execute Lisp Script 620
19.21.5 The !py Command: Execute Python Script 621
19.21.6 The !tcl Command: Execute Tcl Script 621
19.21.7 The 'tk Command: Execute Tcl/Tk Script. 621
19.21.8 The !Nistfuncs Command: List Saved Functions 622
19.21.9 The !rmfunc Command: Remove Saved Function 622
19.21.10 The !mkscript Command: Create Current Cell Script 622
19.21.11 The !ldshared Command: Load Plug-In Script Library 623
Selections oL 623
19.22.1 The !select Command: Select Objects 623
19.22.2 The !desel Command: Deselect Objects 625
19.22.3 The !'zs Command: Zoom to Selected Objects 625
Shell . . . o e 625
19.23.1 The !shell Command: Pop Up Terminal Window 625
19.23.2 The !ssh Command: Connect to Remote System 626

Technology File e 626

xxii CONTENTS
19.24.1 The !attrvars Command: List techfile attribute variables 626
19.24.2 The !dumpcds Command: Create Virtuoso’™ Startup Files 627

19.25 Update Release o o e e 627
19.25.1 The !'update Command: Download/Install Update 627

19.26 Variables L 627
19.26.1 The !set Command: Set Variables 627
19.26.2 The !'unset Command: Unset Variables 628
19.26.3 The !'setdump Command: Dump Variables 628

19.27 WRspice Interface L 629
19.27.1 The !'spcmd Command: Run WRspice Command 629

A Technology File 631
Al Technology File Comments e 634
A2 Technology File Macros 634
A21 The Set Keyword: Variable Expansion 635

A2.2 The eval Keyword: Expression Evaluation 635

A3 Technology File Global Variables 636
A4 Technology File Path Definitions 637
A5 Technology File Scripts o o e 638
A6 Technology File Layer Blocks 638
A6.1 Technology File Layer Block Keywords: Misc. Attributes 640

A.6.2 Technology File Layer Block Keywords: Presentation 641

A.6.3 Technology File Layer Block Keywords: Conversion 644

A64 Technology File Layer Block Keywords: Extraction 645

A6.5 Technology File Layer Block Keywords: Physical Properties 650

A.6.6 Technology File Layer Block Keywords: Design Rules 652

A7 Technology File Standard Via Definitions 652
A8 Technology File Attributes 653
A8.1 Grid Presentationo 654

A.8.2 Misc. Presentation Lo 656

A.8.3 Attribute Colors 657

A8A4 Grid and Edge Snapping L 660

AR5 Function Key Assignments L 661

A.8.6 Grid Registers L 662

A8.7 Layer Palette Registers o o 663

A.8.8 Font Assignments o 663

A8.9 Variable Setting as Keywords L 0oL 665

A9 Hardcopy Driver Parameters 666

CONTENTS

A10 Resource File o o
B Design Data File Formats
B.1 GDSII Format and Extensions
B.1.1 Physical Mode Cell Properties
B.2 The CIF File Format e
B.3 CIF Format Extensions e
B4 Native Cell File Format
B.5 Computer Graphics Exchange (CGX) Format
B.5.1 CGX Format Identifier
B.5.2 CGX Data Types o o o e
B.5.3 CGX Data Records
B.6 OASIS Format e
B.6.1 OASIS Support in Xico
B.6.2 Characteristics of OASIS Output From Xic
B.6.3 Requirements And Limitations for Reading OASIS
B.7 Library Files o e
B.7.1 Example Library File
B.8 Device Library File 0 e
B.8.1 Device Library Global Properties
B.8.2 Device Library Aliases L
B.8.3 Device Library Devices e
B9 Model Library Files o o
B.9.1 MOS Model Spatial Binning 0L
C Other File Formats
C.1 Label Font File Format
C.2 Label Flags o e
C.3 Help Database Files o
C.3.1 Anchor Text e
D Property Specifications
D.1 Physical Mode Property Specifications
D.2 User-Specified Electrical Property Specifications
D.3 Xic-Managed Electrical Property Specifications
D4 Special Escapes L

E Xic Variables
E.1 Special Constructs L e
E.2 Startupo e

xxiii

669

671
672
672
673
675
679
680
681
681
681
686
686
687
689
689
691
692
693
697
697
700
701

703
703
704
704
708

713
713
717
720
729

XXiv CONTENTS
E.3 Paths and Directories L L 740
EA4 General Visual oL 742
E.5 Keyboard ‘" Commands e 744
E.6 OpenAccess Interface e 745
E.7 Parameterized Cells e 746
E.8 Standard Vias L 748
E.9 Scripts . . . 748
E.10 Selections oL 749
E.11 Side Menu Commands L 750
E.12 SPICE Interface 753
E.13 File Menu — Printing L 756
E.14 Cell Menu Commands 0o 757
E.15 Editing General 757
E.16 Edit/Modify Menu Commands L 759
E.17 View Menu Commands e 762
E.18 Attribute Menu Commands 763
E.19 Convert Menu — General 766
E.20 Convert Menu — Input and ASCIT Output 768
E.21 Convert Menu — Output 774
E.22 Custom Property Filtering 785
E.23 Design Rule Checking e 785
E.24 Extraction Tech e 787
E.25 Extraction Generalo 788
E.26 Extraction Menu Commands 795
E.27 Capacitance Extraction Interface oo oL 799
E.28 Inductance/Resistance Extraction Interface L. 801
E.29 Help System e 804

F Interface Functions 805
F.1 Main Functions 1 oL o e 829

F.1.1 Current Cell e 829
F.1.2 Cell Info e 832
F.1.3 Database 833
F.1.4 Symbol Tables 834
F.1.5 Display« . o e 835
F.1.6 Exit. . . o e 836

F.1.7 Annotation, 836

CONTENTS

F.2

F.3

XXV
F.1.8 Ghost Rendering 838
F.1.9 Graphics L 839
F.1.10 Hard Copy« o o v i i s e 843
F.1.11 Keyboard e 847
F.1.12 Libraries e 847
F.1.13 OpenAccess oo 847
F.1.14 Mode o e 849
F.1.15 Prompt Line o 850
F.1.16 Scripts o e 850
F.1.17 Technology File e 852
F.1.18 Variableso 853
F.1.19 XicVersion o o e 854
Main Functions 2 Lo 854
F.2.1 Arrays ... L 854
F.2.2 Bitwise Logic e 855
F.2.3 Error Reportingo 855
F.24 Generic Handle Functions 856
F.2.5 Memory Management L Lo 858
F.2.6 Script Variables 858
F.2.7 Path Manipulation and Query oL 859
F.2.8 Regular Expressions L o 859
F.2.9 String List Handles L 860
F.2.10 String Manipulation and Conversion 861
F.2.11 Current Directory e 863
F.2.12 Dateand Time e 864
F.2.13 File System Interface 865
F.2.14 Socket and Xic Client/Server Interface 867
F.2.15 System Command Interface 869
F.2.16 Menu Buttons 869
F.2.17 MouseInput oL 871
F.2.18 Graphical Input 871
F2.19 TextInput e 872
F.2.20 Text Output e 873
Main Functions 3 Lo 874
F.3.1 Grid and Edge Snapping oL 874
F.3.2 Grid Style 878
F.3.3 Current Layer 880
F.3.4 Layer Table e 881

XXV

F.4

F.5

F.6

F.7

F.8

F.9

CONTENTS

F.3.5 Layer Database e 882
F.3.6 Layers o e 883
F.3.7 Layers — Extraction Support 885
F.3.8 Selections 887
F.3.9 Pseudo-Flat Generator 889
F.3.10 Geometry Measurement 890
Layout File Input/Output Functions 891
F.4.1 Layer Conversion Aliasing 891
F.4.2 Cell Name Mapping o it 892
F.4.3 Cell Table e 893
F.4.4 Windowing and Flatteningo 0oL 893
F.4.5 Scale Factor 894
F.4.6 Export Flags o . o o e 895
F.4.7 Import Flags 895
F.4.8 layout File Format Conversion 895
F.4.9 Export Layout Fileo 896
F.4.10 Cell Hierarchy Digest 899
F.4.11 Cell Geometry Digest e 918
F.4.12 Assembly Stream 921
Geometry Editing Functions 1 L o 924
F.5.1 General Editing Lo 924
F.5.2 Current Transform L 924
F.5.3 Derived Layers e 927
F.5.4 Object Management by Handles 929
Geometry Editing Functions 2 oL Lo 944
F.6.1 Cells, PCells, Vias, and Instance Placement 944
F.6.2 Clipping Functions 948
F.6.3 Other Object Management Functions 950
F.6.4 Property Management L L 957
Computational Geometry and Layer Expressions 961
F.7.1 Trapezoid Lists and Layer Expressions 961
F.7.2 Operations e 968
F.7.3 Spatial Parameter Tables 969
F.74 Polymorphic Flat Database 970
F.7.5 Named String Tables L 972
Design Rule Checking Functions oL 973
F.8.1 DRC . . . e 973
Extraction Functions L L 978

CONTENTS xxvii

F.9.1 Menu Commands o 978

F.9.2 Terminals L 981

F.9.3 Physical Terminals o 985

F.9.4 Physical Conductor Groups 986

F.9.5 Physical Devices 988

F.9.6 Physical Subcircuitso 990

F.9.7 Electrical Devices 993

F.9.8 Resistance/Inductance Extraction Lo 993

F.10 = Schematic Editor Functions oL 995

F.10.1 Output Generation 995

F.10.2 Electrical Nodes e 995

F.10.3 Symbolic Mode e 996

G The FileTool Utility 999

G.1 Introduction L 999
G.2 Command Line Options 1000
G.3 FileTool: Setting Variables 1001
G4 FileTool: Assemble Script File Evaluation 1003
G.5 FileTool: Obtaining File Information. 1004
G.6 FileTool: ASCII Text Representation of Layout Files 1004
G.7 FileTool: Layout File Comparison 1005
G.8 FileTool: Layout File Splitting 1005
G.9 FileTool: CHD File Generation 1006
G.10 FileTool: Layout File Merging and Translation 1006
H The XicTools Accessories 1009
H.1 HTML Viewer and Help Portal: mozy 1010
H.1.1 Mozy Configuration 1012

H.2 File Transfer Utility: httpget e 1012
H.3 The FastCap Post-Processor: fcpp oo o 1014
H.4 Help to HTML Conversion Utility: hlp2html 1014
H.5 Web Server Bridge to Help Database: hlpsrv. 1015
H.6 List File Pack/Unpack Utilities: 1stpack, 1stunpack 1016

xxviil CONTENTS

This page intentionally left blank.

Chapter 1

Introduction to Xic

This chapter will provide an overview of the Xic program, setup and initialization information, and
information for basic use. Detailed information on the various commands, features, and modes will be
found in the following chapters. Information on file formats and other rather technical topics can be
found in the appendices. New users should read this chapter and the first two sections of the following
chapter thoroughly, and read the sections in the remaining chapters describing the commands referred
to in the usage sections in chapter 2. The on-line help contains most of the information presented
in this manual, in a cross-referenced format. Users will likely make extensive use of the help system.
The information provided in the help system is generally more up-to-date than can be provided in the
manual, and should be considered to be correct if there is ever a conflict.

Whiteley Research is more than happy to assist users by answering questions and providing informa-
tion. The “WR” button in the Xic interface brings up a mail client which can be used to send questions
to Whiteley Research, which will be answered as soon as possible. However, in order for this service to
operate efficiently, it is requested that users make an effort to answer questions by reading the provided
documentation before contacting Whiteley Research.

In this manual, text which is provided in typewriter font represents verbatim input to or output from
the program. Text enclosed in square brackets ([text]) is optional in the given context, as in optional
command arguments, whereas other text should be provided as indicated. Text which is italicized should
be replaced with the necessary input, as described in the accompanying text.

1.1 Xic Graphical Editor Overview

Xic is a dual-mode graphical editing tool. In the physical editing mode, Xic is a hierarchical mask layout
editor, with interactive and batch mode design rule checking, arbitrary angle polygon and wire support,
netlist and parameter value extraction, and many more advanced features. In electrical layout mode,
Xic serves as a hierarchical electrical schematic editor and schematic capture front end for SPICE. In
the XicTools environment, circuit simulation can be performed and results analyzed from within Xic,
through an interprocess communication channel established to the companion WRspice program.

Arrayed along the top of the main window is a toolbar containing drop-down menu selectors. Below
the menu bar is a tool bar containing buttons and other controls, including the coordinate readout area
to the right. To the left of the main window is an array of additional command buttons. These menu
commands control the operation of Xic. The main drawing window occupies the largest section of the

2 CHAPTER 1. INTRODUCTION TO XIC

main window. The main drawing window supports drag and drop as a drop receiver for files. To the left
of the main drawing window is the layer menu, which displays a listing of the layers used in the process.
The layers, and their attributes, are specified in a technology file read by Xic at program startup.

Just below the main drawing window is the prompt line, which provides a channel for text-mode
interaction with the program. In the same row, below the buttons in the side menu is the key press
buffer area, which records characters typed into the graphics window. It is invisible until characters
are typed. The typed characters are interpreted as command accelerators. Below the prompt line, at
the bottom of the main window, is a status line which provides information about the current program
operating state.

The WR button, in the upper left corner of the main window, brings up a mail client which can
be used to send messages and files via internet mail. It is preloaded with the address of the technical
support group at Whiteley Research.

Despite the array of features, Xic is intended to be straightforward and intuitive to use, Xic has
extensive on-line documentation available through a context-sensitive help system. This help system
can easily be augmented and customized by the user, so that the user’s design rules and tips, and other
technical information can be made available from within Xic.

Xic includes a native, script execution facility, with plug-in support for Python and Tcl/Tk. These
languages will be available if installed on the user’s computer. The native scripting language is a
straightforward but powerful C-like language with a rich library of primitives for controlling the operation
of Xic. Scripting can be used for automation, for parameterized cells and executable labels, and to
implement user-defined commands. These commands may appear as buttons in the User Menu.

One application of the user scripts is to provide simple, menu based commands for creating geomet-
rical objects, devices, or parameterized device structures for use in circuit layout. Further uses for this
capability are limited only by the user’s imagination.

Xic can execute scripts in batch and server modes, allowing geometrical manipulations to be performed
in a background or non-local environment. As a server, Xic can serve as the workhorse back-end for
web-based or turn-key third-party products or services, or in-house custom applications.

Xic provides access to the OpenAccess database via a plug-in. It can utilize the OpenAccess database
provided with Cadence Virtuoso, or Synopsys/Ciranova PyCell Studio, and others. Xic has some limited
compatibility with Cadence Virtuoso: Xic can directly read Cadence technology and display resource
files, and can read layout and some schematic and schematic symbol views.

Default schematic editing support is provided for a wide variety of devices, even Josephson junc-
tions. Additional devices and subcircuits can easily be added by the user, or changes can be made to
existing devices, by editing a single text file. Xic also provides a high-powered model library search
engine compatible with any SPICE format model or subcircuit library files, such as those provided by
semiconductor manufacturers.

Hard copy support is available for a variety of printers and file formats, including PostScript (mono
and color), HPGL, and HP laser.

Xic has support for several archive layout file formats, plus native input and output. Data input in
a given format will remain in that format, unless explicitly converted.

Xic produces data files which contain both electrical and physical data, though one of these two data
areas may be empty. The file format used can be one of:

e The native format, in which each cell of a design is written to an independent ASCII file.

e An extension of GDSII, a binary format where the entire design can be written to a single file.

1.2. XIC FEATURE SETS 3

e The newer and more compact OASIS format, which is a replacement for GDSII.

e An extension of CIF, a multi-cell format, somewhat archaic, but an ASCII format so human-
readable.

e The CGX file format, developed by Whiteley Research.

e OpenAccess, a third-party database used by Cadence and others.

Xic will read any of these file types automatically, and save any editing changes in the same file type
unless instructed otherwise.

Built-in converters can be used to convert between the file formats. It is possible to “strip” the
output, providing a physical-data file completely compatible with the industry standard file formats, for
portability of mask layout information. It is also possible to read and write a “text-mode” version of
GDASII files, which can be used to repair corrupted or misbehaving GDSII databases.

Xic provides a powerful facility for translating between supported layout file formats, while poten-
tially modifying the data. Possible modifications include layer filtering and aliasing, cell name global
modification and aliasing, flattening, and spatial filtering to a rectangular area with or without clipping,
cell replacement, and more. These operations can be applied to very large files, as a unique technique
minimizes memory use.

In physical mode, design rule checking can be performed as each new object is created of modified.
Batch mode checking is also available, either in the foreground, or as a background child process. The
philosophy of Xic is that it is never in the user’s best interest to “cheat” in the enforcement of design
rules, yet there may be times when a given rule is not appropriate, and a modified rule should be used.
Following this philosophy, the user is given complete control over the design rules, which can be edited,
disabled, or rules added interactively. The user can initiate batch mode design rule checking over a given
area or over a complete cell. Design rule checking is performed over a pseudo-flat internal representation
of the layout, so that physical rules are checked without any constraint based upon which subcells contain
the geometry.

Xic has provision for netlist and parameter extraction. The netlist obtained from the physical layout,
plus extracted physical device parameters, can be used to generate a SPICE output file, and even a
schematic. Automated layout vs. schematic (LVS) testing is provided.

1.2 Xic Feature Sets

The Xic user may have access to only a subset of features. These feature sets correspond to ”virtual”
products, that were historically separate programs.

There are three feature sets available. The “FULL” set enables all Xic features. The “EDITOR” feature
set corresponds to the Xicll program, which provides physical layout editing capability. The “VIEWER”
feature set corresponds to the Xiv program, which allows physical layout viewing. The subsections that
follow describe these feature sets in more detail.

1.2.1 The EDITOR Feature Set

This feature set corresponds to the Xicll virtual product. This was once a stand-alone layout editor
product. Currently, the same functionality is provided via running Xic with the EDITOR feature set,
which was formerly imposed during license authentication.

4 CHAPTER 1. INTRODUCTION TO XIC

One can force running with the EDITOR feature set by setting the environment variable FORCE_XICII
before starting the Xic program.

This feature set restricts the functionality to physical layout editing. This provides a low-cost alter-
native for users that do not require the full functionality of Xic. We will continue to use “XiclP’ to refer
to Xic running with this feature set.

In order to streamline support and maintenance, the documentation tree, i.e., the manual, help
database, and release notes, is common to all feature sets. This is a slight disadvantage to users of
restricted feature sets, as the documentation contains descriptions of disabled features, which may lead
to confusion. However, this greatly simplifies maintaining the documentation.

This section will list the differences and features that are unavailable in the Xicll virtual product.

1. Technology File
Parts of the technology file that relate to features that are not available in Xicll are ignored, but
will generate warning messages. In the example technology files, these features are enclosed in
macro-tested blocks to avoid the warnings. The syntax is

If FEATURESET == "FULL"
EndIf
The right side of the conditional can take these values:

"FULL"
All features enabled.

"EDITOR"
Layout editing feature set (Xicll)

"VIEWER"
Layout viewing feature set (Xiv)

2. No Design Rule Checking
Xicll does not have DRC support, consequently there is no DRC Menu in Xicll.

3. No Electrical Mode
Xicll is a physical layout tool only. There is no schematic entry, and no SPICE capability. There
is no Electrical or Physical button in the View Menu.

4. No Extraction
Xicll has no extraction capability and no Extract Menu.

5. No Batch or Server Modes
The background processing capability is not available in Xicll.

6. ‘I’ Commands
The ‘I’ commands in Xicll are identical to those in Xic, however ‘" commands in Xicl/l which relate
to unavailable features will not be recognized.

1.2.2 The VIEWER Feature Set

This feature set corresponds to the Xiv virtual product. This was once a stand-alone layout viewer
product. Currently, the same functionality is provided via running Xic with the VIEWER, feature set,
which was formerly imposed during license authentication.

1.2. XIC FEATURE SETS 5

One can force running with the VIEWER feature set by setting the environment variable FORCE_XIV
before starting the Xic program.

This feature set restricts the functionality to physical layout viewing. This provides a low-cost
alternative for users that do not require the full functionality of Xic. We will continue to use “Xiv’ to
refer to Xic running with this feature set.

In order to streamline support and maintenance, the documentation tree, i.e., the manual, help
database, and release notes, is common to all feature sets. This is a slight disadvantage to users of
restricted feature sets, as the documentation contains descriptions of disabled features, which may lead
to confusion. However, this greatly simplifies maintaining the documentation.

This section will list the differences and features that are unavailable in the Xiv virtual product.

1. Technology File
Parts of the technology file that relate to features that are not available in Xiv are ignored, but
will generate warning messages. In the example technology files, these features are enclosed in
macro-tested blocks to avoid the warnings. The syntax is

If FEATURESET == "FULL"
EndIf
The right side of the conditional can take these values:

IIFULL n
All features enabled.

"EDITOR"
Layout editing feature set (Xicll)

"VIEWER"
Layout viewing feature set (Xiv)

2. No Editing
All cells are treated as read-only. The menus that relate to changing the layout (Edit and Modify)
are absent.

3. No Design Rule Checking
Xiv does not have DRC support, consequently the DRC Menu is absent.

4. No Electrical Mode
Xiv is a physical layout viewing tool only. There is no schematic entry, and no SPICE capability.
There is no Electrical or Physical button in the View Menu.

5. No Extraction
Xiv has no extraction capability and no Extract Menu.

6. No User Menu
Scripting is not available.

7. No Batch or Server Modes
The background processing capability is not available in Xiv.

8. I’ Commands
The ‘I’ commands in Xiv are identical to those in Xic, however ‘I’
to unavailable features will not be recognized.

commands in Xiv which relate

6 CHAPTER 1. INTRODUCTION TO XIC

1.3 A Quick Tour of Xic Capabilities

1.3.1 History of Xic

The precursor to Xic was the Kic layout editor, a very simple no-frills layout editor developed at Berkeley
in the 1980’s. In the late 1980s, the author needed a layout editor to support contract development and
research efforts in superconductive electronics, and adopted Kic, run under something called a “DOS
extender” (to support 32-bit applications) on an early and very expensive 1386 computer. This required
extensive modification to Kic, mostly to support the PC graphics. Kic is still available as free software
on the Whiteley Research web site.

After Unix became available for 386/486 PCs in the form of the FreeBSD operating system, DOS and
direct-write graphics became history. Xic became a separate program in late 1995, initially using the X-
window system (Xt) user interface toolkit. Over the following years, Xic became a full-time development
effort, and the extraction, DRC, and other subsystems were added. Although to this day faint similarities
to Kic exist, internally the code has been replaced has been replaced by several iterations of more modern
code, and the database and other systems were replaced with improved implementations.

Eventually, Xic underwent a complete rewrite into C++ (from C) to improve maintainability and
organization. The GTK toolkit was adopted for the user interface.

Whiteley Research Inc. was founded in 1996 to market Xic, and the companion WRspice program.
Since then, Xic has continued to develop, as new users brought forward new ideas and requirements.

1.3.2 General

Xic provides a menu of buttons along the side (the “side menu”), and s number of drop-down menus along
the top of the main window. Xic responds to key presses in various ways, and provides an input/output
text area just below the main window. Key presses are interpreted as macros, special commands, menu
command accelerators, or as ‘I’ commands. Several control sequences directly initiate certain operations,
for example Ctrl-r will redraw the window and Ctrl-g will prompt for grid parameters. Other control
sequences will trigger menu commands as accelerators, and typing the unique prefix of the command
name (as shown in the tool tip which appears as the mouse pointer hovers over a menu entry) will trigger
menu commands. If ‘I’ is pressed, the rest of the sequence (until Enter is pressed) is taken as an internal
or Unix shell command. If ‘?” is pressed, the rest of the sequence (until Enter is pressed) is taken as a
help database keyword.

1.3.3 The Help System

Xic contains a comprehensive HTML-based on-line help system. The help viewer can also function as a
web browser, providing access to internet resources. The viewer can serve as an input device for scripts,
i.e., the window would contain a form which provides parameters to a script. The help database can be
augmented by the user, allowing local information to be easily accessed.

Xic is internet aware, and can actually open design files served by a remote HTTP or FTP host. Files
can also be opened in response to clicking on links in the help viewer.

1.3. A QUICK TOUR OF XIC CAPABILITIES 7

1.3.4 Cadence Virtuoso and OpenAccess Compatibility

Xic can read and write design data to an OpenAccess database, but OpenAccess is not required. Xic can
read and use ASCII technology and DRF files intended for Cadence Virtuoso and other similar tools,
as provided by chip foundries. Xic can read schematic, symbol, and layout views produced by Cadence,
and to varying degrees, obtain a working, simulatable cell hierarchy. Presently, it is not possible to write
back schematic information to Cadence without corruption.

Xic supports Ciranova/Synopsys portable Python-based parameterized cells, and provides support
for abutment and stretch handles in native parameterized cells.

1.3.5 Layout Editing

First and foremost, Xic is an editor for integrated circuit mask layouts. Although, in large measure, the
notion of mask layout from manual polygon placement has disappeared in modern electronics, having
been replaced by automated cell place and route, there are still many instances where layout viewing
and editing are essential. Xic is designed the make this task efficient and straightforward.

Xic makes use of a proprietary database technology which provides extremely fast access to spatially-
keyed data. The database technology has changed several times over the life of the program, and the
current database, though invisible to users, is an important achievement.

Xic has a complete set of features for creating, moving, transforming, and modifying geometrical
features and subcells, with complete undo/redo capability. Most of these features are accessed from the
side menu, and from the Edit Menu and Modify Menu. Basic mouse operations allow selection, and
moving, copying, or stretching selected objects. The ability to create physical text or crude images (e.g.,
for company logos) is built in.

Xic operates on a cell hierarchy, and has commands to push and pop the editing context through the
hierarchy, and to flatten the hierarchy to arbitrary depth.

Some releases of Xic are 32-bit applications, and as such have an inherent memory limitation of about
3Gb. Xic has internal memory management which is designed to use as much available virtual memory
as possible. On a system with sufficient memory, 2-3 GB files can be read in for editing directly. In Xic
releases compiled for 64-bits, there is no such memory limitation.

1.3.6 Input/Output

The technology-specific information used by Xic is maintained in a single human-readable file. Most of
the parameters set by the technology file can be set or reset from within Xic, and an updated technology
file can be easily generated.

Xic can read or write files in several formats. These include

GDSII
The industry-standard binary data format.

OASIS
A new standard intended to replace GDSII and is far more compact.

CIF
An ancient ASCII data format, still in use occasionally.

8 CHAPTER 1. INTRODUCTION TO XIC

CGX
A more compact replacement for GDSII developed by Whiteley Research (and placed in the public
domain). Tt still uses fixed-sized integers, so is not nearly as compact as OASIS, but is simple to
generate and parse.

Native
A CIF-like cell-per-file format.

OpenAccess
If present, Xic can read and write to an OpenAccess database, including the databases provided
with Cadence Virtuoso and Ciranova PyCell Studio.

Any files in these formats can be read directly into Xic, whether or not the current technology
matches. In fact, it is possible (and sometimes desirable) to start Xic with no technology file. As the file
is read, Xic will add layers as necessary to represent the file. After changing layer colors and fill patterns
as desired, a new technology file can be dumped.

Files can be read into the Xic database, and later written to disk in any of these formats. The default
is to write in the same format as the original file.

In addition, format conversions can be applied directly, bypassing the database load. While con-
verting, windowing operations (clipping), scaling, or flattening can be applied. Since Xic uses 64-bit file
offsets, the direct conversions can be applied to huge files, even with 32-bit Xic binaries and modest
memory.

1.3.7 Design Rule Checking

Xic has a built-in design rule checking engine, based on rules provided in the technology file or interac-
tively in Xic. Both interactive (performed after every geometry modification) and batch-mode checking
(foreground or background) is supported, in all or a portion of the layout.

Errors are reported in a log file, and indicators added on-screen. Clicking on the indicator can provide
a close-up view of the error and explanatory text.

There is a rule editor that gives the user complete control over the rules and parameters in use.
Although a fairly complete set of built-in tests is provided, user-defined tests allow more specialized
tests to be performed. Special layers and flags allow objects and regions to be ignored during testing.

1.3.8 Electrical Mode

When Xic is in electrical mode (selectable under the View Menu) the main window is set up for
schematic editing. A user-configurable palette of devices is available for placement. Devices are placed,
wired together, and properties added to provide device parameters. Once a schematic is complete, it
can be dumped as a SPICE file, or simulation can be performed interactively through the companion
WRspice program. Performing a simulation is as easy as clicking the run button in the side menu,
then, when complete, the plot button can be pressed, then clicking on nodes in the circuit diagram will
display simulation plots. Plots can also be created while simulating, and are updated as the simulation
progresses.

There are provisions for providing arbitrary names for nodes and devices in the circuit. The default
is for Xic to define the names in most cases. There is a symbolic representation capability, enabling a
subcircuit to have a special symbol, instead of a schematic, when used as a subcell.

1.3. A QUICK TOUR OF XIC CAPABILITIES 9

Xic provides vectorized instance placements, and a complete net expression capability for multi-
conductor wire net definition.

Electrical-mode data is “tied” to the physical mode data, and saved in the same file. This requires
some extensions to be employed in the files. These extensions are 1) usually ignored by other programs,
and 2) can be easily stripped out to ensure portability of physical data.

1.3.9 Extraction

The commands in the Extract Menu deal with the electrical/physical association defined for a cell,
i.e., the electrical schematic and the physical layout.

It is not always necessary to enter the schematic by hand. A schematic can be produced from a
SPICE file, or from the physical layout. The resulting schematic is perhaps not too useful from a
human-readability standpoint, but is valid nonetheless. The user of course has the option to rearrange
things and make other changes to promote readability and aesthetics.

There are provisions to update the schematic from the physical layout, either globally or per-device.
It is possible to dump a netlist file or SPICE file created directly from the physical layout.

There is provision for LVS (layout vs. schematic) analysis.

The parameters that control extraction, and device definitions for extraction, generally appear in the
technology file. These can be created or modified from within Xic through the technology parameter
editor window.

1.3.10 Awutomation

Xic contains a just-in-time compiler for a powerful built-in scripting language. The native language is
C-like, though a Lisp-like variant is also supported. There is also interoperability with the popular tcl/tk
scripting language.

A lengthly and expanding set of interface functions allow Xic to be controlled by the scripts, and a
very efficient computational geometry engine allows database manipulation.

Xic even supports a server mode, whereby Xic does not use graphics, and instead becomes a “daemon”,
listening for job requests. Other applications can use the server for geometrical and other manipulations.
A similar batch mode, where Xic again does not use graphics but instead executes a script and exits, is
also available.

The user’s scripts can appear as command buttons in the User Menu, allowing custom operations
to be easily accessible in normal operation.

The script language is used elsewhere, for example in user-defined design rule tests, and in executable
labels. An executable label is a text object in a design that when clicked-on will perform some operation.
Scripts are also used in template (parameterized) cells, which enable on-the-fly generation of subcells
based on an arbitrary set of parameters.

10 CHAPTER 1. INTRODUCTION TO XIC

1.4 A Quick Tour of the Xic Menus

1.4.1 Side Button Menu

Buttons arrayed along the side of the main window control the generation of objects - rectangles, poly-
gons, wires (fixed-width paths), arcs, and rounded objects. Other buttons enable setting related defaults,
such as wire end style and width, and the number of vertices used in “round” objects. Additional buttons
control operations such as erase/yank/put, xor, clipping, and rotating. In electrical mode, this menu
changes to provide buttons for adding connection terminals, controlling the node-naming, and managing
the simulation interface to the companion WRspice program. These buttons are described in chapter 7.

1.4.2 Top Button Menu

There are a few buttons arrayed horizontally above the main drawing window, along with the coordinates
display. These are associated with the layer table and selection control. The controls in this menu are
described in 3.8.

The drop-down menus arrayed along the top of the main window control additional features.
In addition, there are a number of special ‘! commands that are entered by typing the command
name. These control or enable additional features that are not as frequently used.

Finally, there is a rather sophisticated scripting interface with a large collection of built-in functions,
which enables the user to create automation scripts. These scripts can be initiated from the User Menu.

1.4.3 File Menu

The File Menu provides commands to open, save, and list files, cells, and other things. This menu also
contains the printer interface.

File Menu

Label Name | Pop-up | Function
File Select fsel File Selection Open file
Open open | none Open new cell or file
Save sV Modified Cells Save modified cells
Save As save none Save file, rename
Save As Device sadev | Device Parameters Electrical mode only,

apply defaults and save device
Print hcopy | Print Control Panel Hard copy plot
Files List files | Path Files Listing List search path files
Hierarchy Digests | hier Cell Hierarchy Digests | List of Cell Hierarchy Digests
Geometry Digests | geom Cell Geometry Digests | List of Cell Geometry Digests
Libraries List libs Libraries List libraries
OpenAccess Libs | oalib | OpenAccess Libraries | List OA libraries (with OA only)
Quit quit none Exit Xic

1.4. A QUICK TOUR OF THE XIC MENUS

1.4.4 Cell Menu

The Cell Menu contains command buttons to change the current cell, and to get information about

cells in memory.

Cell Menu
Label | Name | Pop-up | Function
Push push none Edit subcell
Pop pop none Edit parent cell
Symbol Tables | stabs | Symbol Tables List of cell symbol tables
Cells List cells | Cells Listing List cells in memory
Show Tree tree Cell Hierarchy Tree | Display cell hierarchy

1.4.5 Edit Menu

The Edit Menu contains commands which provide panels for cell placement and property editing, and

other features.

Edit Menu
Label | Name | Pop-up | Function
Enable Editing cedit | none Enable/disable editing mode
for current cell
Setup edset | Editing Setup Show Editing Setup panel
Create Cell crcel | none Create new cell
Create Via crvia | none Create a standard via
Flatten flatn | Flatten Hierarchy Flatten hierarchy
Join/Split join | Join or Split Objects Control join/split operations
Layer Expression | lexpr | Evaluate Layer Expression | Control layer expression eval-
uation
Properties prpty | Property Editor Edit properties
Cell Properties cprop | Cell Property Editor Edit cell properties

1.4.6 Modify Menu

The Modify Menu contains supplements the side menu with commands to undo/redo operations, and

move, copy, and delete objects. Most of these commands have a faster keyboard equivalent.

Modify Menu
Label Name | Pop-up | Function
Undo undo none Undo last operation
Redo redo none Redo last undo
Delete delet | none Delete objects
Erase Under eundr | none Erase under objects
Move move none Move objects
Copy copy none Copy objects
Stretch strch | none Stretch objects
Chg Layer chlyr | none Move object to new layer
Set Layer Chg Mode | mclcg | Layer Change Mode | Set layer change mode for move/copy

12

1.4.7 View Menu

CHAPTER 1.

The View Menu contains commands which affect the presentation of the current design, including the
selection of physical and electrical (schematic) modes.

View Menu
Label Name | Pop-up | Function
View view none Set view in window
Physical or Electrical | phys or sced | none Switch mode
Expand expnd Expand Show detail in window
Zoom zoom dialog Change window scale
Viewport vport sub-window New drawing window
Peek peek none Show layers in area
Cross Section csect sub-window Show layers in cross-section
Rulers ruler none Add transient gradations
Info info Info Show cell/object parameters
Allocation alloc Memory Monitor | Show memory statistics

1.4.8 Attributes Menu

The Attributes Menu provides commands which affect the presentation of the design, such as the

colors used.

Attributes Menu

Label Name | Pop-up | Function

Save Tech updat | none Save technology file

Key Map keymp | none Create keyboard mapping file
Define Macro macro | none Define a keyboard macro

Main Window Attributes sub-menu Set main window attributes

Set Attributes attr Window Attributes Set rendering attributes for main window
Connection Dots | dots Connection Points Show connection dots in schematics
Set Font font Font Selection Set text fonts used

Set Color color | Color Selection Set layer and other colors

Set Fill £ill Fill Pattern Editor Set layer fill patterns

Edit Layers edlyr | Layer Editor Add or remove layers

Edit Tech Params | 1pedt | Tech Parameter Editor | Edit technology parameters

INTRODUCTION TO XIC

1.4.9 Convert Menu

The Convert Menu provides commands for importing and exporting designs to various non-native file
formats, and for converting between file formats.

1.4. A QUICK TOUR OF THE XIC MENUS

Convert Menu
Label | Name | Pop-up | Function
Export Cell Data exprt | Export Control Create a cell data file
Import Cell Data imprt | Import Control Read a cell data file
Format Conversion | convt | Format Conversion Direct file-to-file format conversions
Assemble Layout assem | Layout File Merge Tool | Merge layout data
Compare Layouts diff Compare Layouts Find differences between layouts
Cut and Export cut Export Control Write out part of a layout
Text Editor txted | Text Editor Text edit cell file

1.4.10 DRC Menu

The DRC Menu contains commands associated with design rule checking.

13

DRC Menu
Label Name | Pop-up | Function
Setup limit | DRC Parameter Setup | Set limits and other parameters
Set Skip Flags sflag | none Set skip flags
Enable Interactive intr none Set interactive DRC
No Pop Up Errors nopop | none No interactive errors list
Batch Check check | DRC Run Control Initiate DRC run
Check In Region point | none Test rules in region
Clear Errors clear | none Erase error indicators
Query Errors query | none Print error messages
Dump Error File erdmp | none Dump errors to file
Update Highlighting | erupd | none Update highlighting from file
Show Errors next sub-window Sequentially display errors from file
Create Layer erlyr | none Write highlight error regions to ob-
jects on layer
Edit Rules dredt | Design Rule Editor Edit rules for layers

1.4.11 Extract Menu

The Extract Menu provides commands associated with the extraction of electrical information and
netlists from the physical layout, and layout versus schematic checking.

Extract Menu
Label | Name | Pop-up | Function
Setup excfg | Extraction Setup Set up and control extraction
Net Selections exsel | Path Selection Control | Select groups, nodes, paths
Device Selections dvsel | Show/Select Devices Select and highlight devices
Source SPICE sourc | Source SPICE File Update from SPICE file
Source Physical exset | Source Physical Update electrical from physical
Dump Phys Netlist | pnet Dump Phys Netlist Save physical netlist
Dump Elec Netlist | enet Dump Elec Netlist Save electrical netlist
Dump LVS lvs Dump LVS Save physical/electrical comparison
Extract C exc Cap Extraction Extract capacitance using Fast[er]Cap
Extract LR exlr LR Extraction Extract L/R using FastHenry

14 CHAPTER 1. INTRODUCTION TO XIC

1.4.12 User Menu

The User Menu contains the script debugger, and the buttons that correspond to user-generated
scripts.

User Menu
Label | Name | Pop-up | Function
Debugger | debug | Script Debugger | Debug scripts
Rehash hash none Rebuild User Menu
others — — User scripts and menus

1.5 Database Overview

The core of Xic is the main database, which stores objects in a format that can be rapidly accessed
spatially. The database, when given a rectangular region, will efficiently provide a list of contained
objects whose bounding boxes overlap the given region. For example, when the user clicks or drags in a
drawing window, the main database will quickly provide a list of the objects which overlap this area, so
they may be shown as selected.

Each cell in memory has a database for each layer used by objects in the cell, plus a database
corresponding to a dummy layer which contains the locations of subcell instances. The cells themselves
are saved in one or more hash tables, the “symbol tables”. The symbol tables allow cell data to be
rapidly found by name. Cell name strings are saved in a common string table, so that address values
can be used for efficient string comparison.

Each symbol table represents a self-contained design space, which can be rapidly switched between.
Xic allows the user to define any number of symbol tables. Cells of the same name can not be saved in
the same symbol table, but can exist in different symbol tables. Thus, for example, different versions
of the same cell hierarchy can be kept in memory simultaneously, but the user can only view/edit using
one symbol table at a time. This capability is used transparently by the geometry comparison functions,
for example, in comparing two versions of the same cell.

The main database is organized as a tree, though the details are proprietary. This structure is self-
balancing, unlike KD trees, thus there is no need to “rebuild” the database when objects are added or
removed. The structure is optimized for rapid access, at a cost of time to build the structure. It is also
optimized for low memory consumption, at a slight cost in speed.

When a file in loaded into the Xic “main” database, cell structures are created for each cell defined in
the file. The cell structures contain trees for each layer used plus one for subcells if any, and are linked
into the current symbol table.

The main database, with spatial access features, is not particularly efficient with regard to memory
use. Large designs may not fit into available memory, depending on the machine. The physical memory
limitation of the computer determines the maximum size of a file that can be read into Xic efficiently.
Very roughly, the memory available should equal the size of the (uncompressed) GDSII file. If the file
requires too much memory, Xic performance can become very sluggish due to page swapping, or in some
cases the operating system will halt the process if memory limits are exceeded.

Although the design must reside in the main database for efficient cell editing, there are operations
where this is not needed. There are provisions for handling extremely large files which can not be
normally loaded.

1.5. DATABASE OVERVIEW 15

1.5.1 Cell Hierarchy Digest

The Cell Hierarchy Digest (CHD) is a data structure designed to solve this problem. A CHD is an in-
memory database which contains information about a hierarchy of cells, in a very compact manner. It
holds no information about the geometry contained in the cells, but does contain offsets into the original
layout file, so that through the CHD, the cell contents can be obtained reasonably quickly. Since the
CHD uses a small fraction of the memory of the full design in the main database, it allows operations
to be performed on very large designs with a modest computer.

The operations that can be performed with a CHD generally involve translation of a layout file into
another layout file. For example, cell sub-hierarchies can be extracted, scaled, layers filtered or aliased,
or cell names globally changed or aliased. The hierarchy can be flattened, filtered through a rectangular
window and possibly clipped to the window, and empty cells (possibly produced by layer filtering) can
be removed.

The CHD can also be used to view but not (directly) edit a large file. This is not as fast as viewing
through the main database, but it is possible to view much larger files with a CHD.

There are also some novel ways to use CHDs in Xic to perform some limited editing. Reference cells
in the main database are dummy cells that contain no data, but reference a cell hierarchy through a
CHD. These cells can be instantiated in other cells normally. However, when written to a layout file on
disk, they are replaced in output with the full referenced hierarchy obtained through the CHD. Thus
one can use reference cells to assemble the top-level cell of a very large design. Each reference cell points
to a sub-part of the design, kept in a separate layout file. When the top-level cell is written to disk, all
of the parts will be extracted and combined into this file.

There is a cell override table which contains the names of cells in main memory. When enabled,
when reading cell data through a CHD, cells in the override table will supersede cells in the original
layout file. Thus, the cell override table provides a substitution mechanism. To perform minor editing
in a hierarchy too large for main memory, one can

1. extract only the cells to be edited into main memory through a CHD,
2. edit these cells, and place their names in the override table, then

3. write a new layout file using the CHD, which will contain the new versions of the cells.

There is a related Cell Geometry Digest (CGD) which contains highly compact geometry collections
on a per-cell/per-layer basis. A CGD can be linked to a CHD, with the total memory used still far
smaller (by approximately a factor of 10) than the same cell hierarchy in the main database. With a
linked CGD, when reading cell data through the CHD, the data are extracted from the CGD, avoiding
accessing the original file on disk. This is usually faster.

1.5.2 Database Resolution

By default, Xic uses an internal resolution of 1000 units per micron. In releases prior to 3.0.12, this was
internally hard-coded. As the dimensions used in integrated circuits continue to shrink, an option for
higher resolution has been added.

The resolution can be set with the DatabaseResolution variable, which can be set to “1000”, “2000”,
“5000”, or “10000”. If unset, 1000 units is used. This resolution applies only to physical data, electrical
resolution is fixed at 1000.

16 CHAPTER 1. INTRODUCTION TO XIC

This variable can be set only from the .xicinit file, which is read before the technology file, or the
technology file. It can not be set or unset in a .xicstart file (read after the technology file) unless
no technology file is read, or by any other means. It is important that the resolution be set before
reading such things as DRC rules, since the rules contain resolution-dependent numbers which would be
incorrect after a resolution change.

Superficially, changing the internal resolution has only subtle effects from the user’s vantage point.
Some of these are:

1. If not 1000, four digits following the decimal point are used when printing coordinates in microns,
in many places in Xic. Otherwise, only three digits are used.
2. The ultimate zoom-in and grid spacing sizes are smaller for higher resolutions.

3. The size of “infinity”, the maximum accessible size for the design, becomes smaller as resolution is
increased, since coordinates are stored internally as 32-bit integers. For 1000 units, the field width
is approximately 2 meters, which decreases to 20 centimeters at 10000 units. This should still be
plenty for most purposes.

4. Layout files produced by Xic will use the internal resolution, so that no accuracy is lost.

Unless there is a specific need, it is recommended that users employ the default resolution.

Chapter 2

Xic Configuration and Startup

2.1 Graphics Support

Starting with Generation 4, Xic and all other Whiteley Research products used the GTK-2 graphical
user interface toolkit exclusively. This replaced the Win32 graphical interface previously used under
Windows and the GTK-1 interface used for other systems. Thus, all releases had precisely the same
graphical interface, which greatly simplified documentation, maintenance, and development.

Presently (April 2024) GTK-2 is still the reference toolkit, but it is being replaced by Qt, another
popular toolkit. The user interface is very similar, most of the changes are “under the hood”. The
tremendous amount of work to bring in a different toolkit is about complete, and Qt releases are in
“beta” testing.

The reasons for the change are as follows.

e Starting with GTK-3, a new drawing layer named Cairo was introduced, and the previous drawing
layer, which was a vaneer over the X-windows system, was eliminated. The problem was that the
new drawing layer was not at all compatible with Xic, or any CAD type of tool requiring rendering
precision and high performance. Cairo is geared for PowerPoint-type applications.

e GTK-2 is long-obsolete, and it will likely disappear at some point soon. The current GTK is
GTK-4, which is not supported by Xic and probably never will be. Xic can build with GTK-3, but
the result has serious flaws and shortcomings, and further development with GTK has stopped.

e GTK is a C library and Xic and WRspice are C++ programs, whereas Qt is also C++. The internal
organization of the Qt version of the programs is far nicer and more concise and will be esier to
maintain and extend.

e Qt has very good compatibility with Windows and macOS. There is no need to run an X server
like XQuartz with the macOS Qt versions.

e QQt is contemporary software under active development, GTK-2 is very old.

17

18 CHAPTER 2. XIC CONFIGURATION AND STARTUP

2.2 Apple macOS Notes

In macOS, lurking beneath the pretty graphics is a complete Unix operating system based on FreeBSD,
including support for X-windows. Most of the open-source software developed for Linux/FreeBSD has
been ported to macOS, so for the Unix fans (like me), the operating system can look like Unix with
a great graphical interface that also runs Macintosh applications. Overall, macOS is a very impressive
desktop/laptop operating system.

The programs built with the GTK graphics toolkit require that an X-windows server be running,
as X is used for graphics. This is not installed automatically. The Apple-sponsored X-server is called
“XQuartz” and is available for download from the project web site (google “XQuartz download”).

The programs built with the Qt graphics toolkit are native macOS applications and make use of
direct access to the s creen, so there is no neew for XQuartz in this case.

Operation and behavior should be identical or very similar to the Unix/Linux versions of the pro-
grams.

2.2.1 Package Installation

Packages (precompiled program binaries) are being phased out in favor of building from source code. If
you have compatible package files, they can be installed as described here.

The package distribution files are “flat” Apple package files. The installation procedure is pretty
much the same as under Unix/Linux, using the wr_install script from a terminal window.

1. Download the necessary distribution files and scripts. Probably, the easiest course is to download
everything in the distribution directory for your operating system, into a new, empty temporary
directory. Presently, there are eight package files and two scripts. The installation method below
uses the terminal window. When downloading completes, cd to the new directory.

2. Make sure that the wr_install and wr_uninstall scripts are executable (they might not be after
the download). If not, use
chmod 0755 wr_install wr_uninstall

3. The installation location is under /usr/local/xictools, and can not be changed. You will need
to become ‘root’ in order to install packages. For future use of the automated updating features of
Xic and WRspice, you will need to have your account enabled for the “sudo” command, i.e., your
account name should be listed in “/etc/sudoers”. If this is set up, the installer will ask for your
password to enable installation. Otherwise you will have to use the su command to become root
(which may not be enabled).

4. Run wr_install with the argument(s) being the names of the distribution files, or “all”.
./wr_install all

The argument “all” is equivalent to vt *.pkg. This automates the installation procedure. Do
NOT change the names of the files, or wr_install will probably fail.

5. Add the /usr/local/xictools/bin directory to your shell search path, if you haven’t done so.
Once Xic and WRspice have been installed, updating could not be simpler. See the program
documentation: In WRspice, give the commands “help passwd” and “help wrupdate”. In Xic ,
with the mouse pointer in the main drawing window, type “?!passwd” and “?!lupdate”. These help

2.2. APPLE MACOS NOTES 19

topics explain how to set up and use the update features. The programs will check for updates
when started. The user can download and install updates when available. (Warning, packlages are
deprecated and the update feature is not supported presently).

6. For a first-time installation, you will need to install and set up MacPorts. This provides the
graphical libraries used by the programs. Following the instructions, install MacPorts for your
operating system. Be sure to install the default package which installs in the default location (i.e.,
don’t build from source and change the location). Note that the procedure also requires installing
Apple xcode from the App Store. Once the basic installation is done, run, as root, the following
commands:

port -v selfupdate

port install gtk2

port install gsl

port install python2_select
port install python27

port install autoconf

port install pkgconfig

7. Finally, if you are installing GTK versions and if you don’t already have an X-server, you should
install X-Quartz. XQuartz is the “official” X server for masOS and is recommended.

8. You're done, and should be able to run the programs. Furthermore, you should be able to build
the XicTools from source, the MacPorts and xcode provide the necessary libraries.

2.2.2 Installation from Source

Presently, this is the recommended procedure for installing Xic and all of the XicTools on your system. See
the README file at the top directory of the XicTools source tree from github.com/wrcad/xictools.

2.2.3 Un-Installation

To uninstall, the wr_uninstall script can be used. This takes care of file removal and updating the
system package database.

2.2.4 Running the Applications

It is assumed that the user will be initiating the applications from a terminal window, as under
Unix/Linux. The directory containing the program binaries (/usr/local/xictools/bin) should be
in the shell search path. Then, all executables will be found by name. Operation is the same as under
Unix/Linux.

2.2.5 MacBook Keyboard Mapping Issues

The Darwin64 releases work great on a MacBook Pro, however there are some keyboard mapping issues.
Keys which have normal significance to Xic, such as Home, Page Up and Page Down, and the numeric
keypad plus and minus keys are nowhere to be found. Yet, all functionality is present, but maps to

20 CHAPTER 2. XIC CONFIGURATION AND STARTUP

alternative key combinations. One can run the Key Map command in the Attributes Menu if
another mapping is needed.

The table below describes the default mapping.

’ MacBook Pro | Normal keyboard

Delete Backspace

The key labeled “Delete” actually sends a backspace character.
fn-Delete Delete

Press the fn key with Delete to get a real delete character.
fn-Left Home

Press the fn key with the left arrow for the center-full-view function in Xic.

fn-Up Page Up

DRC errors.

Press the fn key with up arrow to get a page up code, used in Xic for displaying

fn-Down Page Down

DRC errors.

Press the fn key with down arrow to get a page down code, used in Xic for displaying

These mappings are set in Apple releases only.

fn-Enter KeyPad Enter

to the zoom-in action, as for Numeric Plus.

Press the fn key with Enter to get the numeric keypad enter code. This is mapped

fn-Right End

the zoom-out action, as for Numeric Minus.

Press the fn key with the right arrow to get the end key code. This is mapped to

Note that if you use a “normal” keyboard with your Apple computer, the two new mappings will be
in addition to the normmal mappings.

The “secondary press” mentioned in Apple documents is button 3 (the right mouse button on a
three-button mouse). You should probably change the track-pad settings in the Preferences to enable
this. There is no button 2 (middle mouse button). You'll have to live without it, or get a three-button
pointing device.

2.2.6 The Alt Key Issue

The MacBook Pro and probably other Mac machines lack a compatible Alt key. This Alt key is used in
Xic as a menu accelerator, and for a button-press modifier. It is reasonable to live without it, but there
is a fix.

The following fix works on my MacBook Pro. Create a file in your home directory named “.Xmodmap”
containing the following two lines:

keycode 66 = Alt_L
add modl = Alt_L

This will map the left “option” button to Alt. The right option button will still do the normal Mac
thing, i.e., send alternate character keycodes.

However, this depends on the left option key returning scan code 66, which may not be true on
different hardware. The xev program can be used to find the actual scan code.

2.3. MICROSOFT WINDOWS NOTES 21

This will apply to all X applications, and the mapping will be recorded when the X server starts.
You can also give the command

xmodmap -e "keycode 66 = Alt_L" -e "add modl = Alt_L"

which will re-map the keys for the current X session.

2.3 Microsoft Windows Notes

This section contains notes relevant to the Microsoft Windows release of the XicTools.

2.3.1 Installation and Setup

Packages (precompiled binary programs) are deprecated in favor of building the programs from source.
If you have access to packages, they can be installed per the instructions in this section.

The packages come in self-extracting .exe files. Simply run the files to do the installation. The pro-
grams can later be uninstalled, either with the Windows software manager or by clicking the Uninstall
icons in the XicTools program group in the Start menu.

The same process can be used to install updated releases — it is not necessary to uninstall first.
A more convenient way to keep current is to use the updating feature of the help system (see 6.1.1).
(Package updating is not currently available).

WARNING
The programs use an entry in the Windows Registry to find their startup files, etc. This entry is created
by the installer program. Thus

1. The correct way to move an existing installation to another location is to uninstall the program,
and reinstall to the new location using the standard distribution file. If you just move the files to
a new location, the Registry won’t be updated and the program won’t run correctly.

2. You can not simply copy files from another machine when creating a new installation. The files
must be installed through the distribution files, or the Registry entry won’t be set.

The Registry entry used (by the inno installer program) is (for example)
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\Xic-4is1

The Windows regedit utility can be used to repair the Registry if necessary. The Windows reg
utility can also be used to query and modify the Registry from the command line.

The programs are installed by default under C:\usr\local, which can be specified to the program
installer. The installation directories will be created if necessary. All of the programs will install under
a directory named “xictools” under the prefix, (for example, Xic files would be installed by default in
C:\usr\local\xictools\xic). The structure of the tree is exactly that as under Linux, which simplifies
compatibility. It is recommended that the default installation location be used, if possible.

22 CHAPTER 2. XIC CONFIGURATION AND STARTUP

Installing MSYS2

Starting January 2021, all Windows binaries are 64-bit, compiled under the MINGW64 subsystem of
MSYS2 (64-bit version).

Although it may be possible to run the programs from other MINGW64 installations, for exam-
ple Cygwin, it is recommended MSYS2 be installed. This replaces the gtk _bundle package that was
previously used to supply graphical interface dlls.

When installing MSYS2 and XicTools programs, you are strongly advised to install in the default
locations if possible.

Go to www.msys2.org. Download and run the installer, and follow the directions. It is easy. When
done, you will have a shell window on the screen. You should type the following commands to load some
things you will need.

pacman -S vim

pacman -S winpty

pacman -S mingw-w64-x86_64-gtk2
pacman -S mingw-w64-x86_64-gsl

This provides the vim editor, the winpty program described below, the GTK-2 libraries and dependencies,
and the Gnu Scientific Library. These satisfy all references needed to run the XicTools programs.

Then, use the vim editor to edit the .bash profile file that exists in the current (your home)
directory. Add the following lines to the bottom of the file:

mount c:/usr/local/xictools /usr/local/xictools
export PATH="/usr/local/xictools/bin:$PATH"
export XT_HOMEDIR=c:/msys64/home/your_username

To run the programs in the future:
Click MSYS2 64bit in the Start menu, then MSYS2 MinGW x64 in the sub-menu. This brings up
a shell window with the MinGW 64-bit support enabled. Note that there are multiple choices in the
sub-menu so be sure to select the one specified, others may not work with the XicTools programs. Take
some time to learn about MSYS2 and MINGW64, particularly the pacman package manager. You can
install lots of useful software that runs in this environment.

The mintty Terminal Emulator Window

The terminal window used in MSYS2 is “mintty”. This does NOT work directly with native Windows
programs that work with a console window, which includes the XicTools programs. One must run
WRspice and possibly Xic with the “winpty” program. Just type winpty followed by the name and
arguments of the program you want to run.

For example, the command to run WRspice is
winpty wrspice ...

where the ... represents the command line arguments to WRspice. The winpty program performs some

2.3. MICROSOFT WINDOWS NOTES 23

magic that enables native Windows programs expecting to find a cmd.com type of window to work with
the mintty.

subsubsectionMSYS2 Basics
The environment is a bash shell and environment very similar to Linux.

You bring up a new shell window from the MSYS2 64bit / MSYS2 MinGW x64 entry of the Start
menu. There are multiple selections for MSYS2 in the Start menu, including MSYS2 MinGW x86
which is the MINGW 32-bit subsystem, MSYS2 MinGW x64 is the MINGW 64-bit subsystem used for
XicTools, and MSYS2 MSYS is the MSYS subsystem without MinGW support. MinGW is “minimal
Gnu (for) Windows” and is a library that provides a limited Linux-like programming environment under
Windows. The XicTools programs use this environment and are thus Windows-native programs.

MSYS2 uses an underlying dll to provide a more complete Linux-like environment, similar to Cygwin.
Installed programs are available for all three subsystems, though the search order differs. The XicTools
do not use the dll, but the MSYS2 environment is very convenient for use with the tools. The MSYS
subsystem provides the shell and other Linux-emulation commands. The MinGW subsystems provide
libraries which enable porting of Linux programs to native Windows.

From the shell window, the file system installed under c¢:\msys64 (or wherever the msys64 directory
is installed) is taken as root. One can access the files and directories explicitly with a path starting with
/c where the c can be any existing drive letter. Your home directory is /home/yourname, or equivalently
/c/msys64/home/ yourname.

It is important to realize that within MINGW and other native Windows programs including Xic Tools,
the paths used by the programs are expected to be Windows paths, though they may use forward slashes.
For example, in the shell /usr/local is rooted to the msys64 directory, but within Xic /usr/local is
rooted to the current drive, e.g., c:/usr/local.

In MSYS2, the mount command can provide an alias between the file system as viewed from the
shell and that of Windows. The command

mount c:/usr/local/xictools /usr/local/xictools

will map the Windows directory c:/usr/local/xictools to the location /usr/local/xictools in the
shell. From a shell window, /usr/local/xictools is equivalent to /c/usr/local/xictools, or in
Windows c:/usr/local/xictools, the default XicTools installation location.

By default, the actual binary executable is run from a script (.bat) file, which is installed in the
same directory as the executables, which by default is C:\usr\local\xictools\bin.

A program group named XicTools is created in the Start menu (or equivalent), from which the
programs can be started. The programs can also be started from a command line, in either a Windows
Command Prompt window or a MSYS2/Cygwin shell window. One will need to type the full path to
the bat file (e.g., type “C:\usr\local\xictools\bin\xic” to start Xic). There are two ways to avoid
having to type the whole path:

1. Add the directory to your search path. This is the PATH variable in the environment. This can be
set in your Command Prompt window by giving a command like

PATH=

or the PATH can be set from the Control Panel (the procedure is described below for Windows
8).

24 CHAPTER 2. XIC CONFIGURATION AND STARTUP

2. The bat files can be copied from the installation location into a directory that is already in the
search path, or to the current directory.

2.3.2 General Notes

The XicTools for Windows are supported on Windows 10 and later. The programs retain the “look and
feel” of the Unix/Linux versions as much as possible, given the constraints of the Windows operating
system.

Starting with Generation 4, the programs use the GTK-2 graphical interface toolkit, as used by the
other releases. The native Win32 interface is gone. The GTK-2 libraries are supplied in a separate
installation module. Installation is mandatory, but the libraries are quite static so will not require much
attention after the initial installation.

Most basic features are available under Windows. Some of the more advanced features are not.

e There is presently no support for the Tcl/Tk or Python script language plug-ins. There is also no
support for the OpenAccess plug-in.

e There is no provision for remote running of the programs as with the X window system in Linux.

e Under Unix/Linux, when the program crashes (of course, a very rare occurrence!), the gdb debugger
is called to generate a stack trace, which is emailed to Whiteley Research for analysis. Since it
is rare to find gdb on a Windows system, an alternative is built in. This produces a file named
progname.stackdump, which is emailed (if possible) to Whiteley Research.

e Windows does not provide a reliable interface for internet mail, so the email clients and crash-
dump report in the XicTools may not work. The mail in XicTools works by passing the message to
a Windows interface called “MAPI”, which in turn relies on another installed program to actually
send the mail.

To get this working in Windows 8, I had to download and install something called “live mail”
from Microsoft, which eventually worked. This app supports MAPI, apparently the Windows 8
Mail app does not(?). The Windows 8 app also does not work with POP3 servers, solidifying my
disrespect.

The “environment variables” mentioned in the Xic/ WRspice documentation are available, and can be
set in a Command Prompt window with the “set” command before starting the programs, or from
the System entry in the Control Panel (or wherever this capability lives in your version of Windows).
Only the latter method works if the programs are started from an icon or menu.

Directory path names used by the programs can use either ‘/” or ‘\’ as the directory separator
character, interchangeably. The path can also contain a drive specifier.

[

The path variables used by Xic that contain lists of directory paths must use either a space or °;
(semicolon) as a separator. Under Unix, the separation characters are space and ‘’ (colon).

The text files used by the programs can have either DOS or Unix line termination. Text files produced
by the programs under Windows will use the DOS format.

Under Windows, where the concept of a “home directory” is somewhat tenuous, the programs will
look for environment variables, particularly HOME, and if found interpret the value as a path to the
home directory. This is true when programs look for startup files. When the program is started from an

2.3. MICROSOFT WINDOWS NOTES 25

icon or shortcut, and the start directory is not explicitly set in the icon properties (it defaults to C:/),
the current directory will be the home directory, rather than C: /.

Those used to a Unix environment are encouraged to download and install the Cygwin tools. These
include most of your favorite Unix commands, plus a complete compiler toolchain for application de-
velopment. In particular, the bash shell is quite useful, as it provides a “DOS box” that responds to
Unix shell commands, and from which one can execute shell scripts. The tools can be downloaded as
individual modules.

If it is needed and does not exist, Xic and WRspice will create a \tmp directory on the current drive.
This will contain temporary files, used by the programs. These should be removed automatically when
the programs terminate, but if not the files can be safely deleted if Xic and WRspice are not running.

2.3.3 Setting Environment Variables

By running Cygwin, the setting of environment variables and similar becomes very familiar to a Linux
user. In particular, running Xic from a Cygwin bash-shell window emulates pretty well the Linux
experience. This is a recommended approach for those familiar with Unix/Linux.

Otherwise, environment variables can be set manually in a Command Prompt window from which
the programs are run. The bat files can be modified and “set” lines added, as an option to avoid
manual setting of variables that should always be in force. Another option is to set the system default
environment variables. Be aware that all other programs will see the variables. Setting the system
environment variables is probably something to avoid if possible. If you insist, here is the procedure for
Windows 8.1. Other supported Windows releases are probably not horribly different.

1. Go to the infamous Start page, click on the circle with down arrow icon near the bottom-left
corner. This shifts to the Apps page.

2. Find the Control Panel, it is listed on the Apps page under Windwos System You can use
the search tool if necessary. Eventually, you’ll find the icon, then click it to bring up the Control
Panel.

3. Click System and Security. The display will change to a new set of choices.

4. Click System.

5. Click Advanced system settings along the left. This brings up a System Properties window.

6. Click the Environment Variables button near the bottom of the Advanced page (this page
should be shown initially).

There are a couple of things one may want to do here, as examples.

1. Add the XicTools bin directory to the system search path.

Scroll the lower System variables window to find the Path entry. Click on this to select it.
Click the Edit... button below, which brings up a text entry window. In the Variable value
window, scroll all the way to the right, and add, for example (use the actual paths if different on
your system)

;c:\usr\local\xictools\bin

26

CHAPTER 2. XIC CONFIGURATION AND STARTUP

Check the spelling, and make sure there is no white space, and that the character before the ‘c’ is
a semicolon, and the character that follows the ‘c’ is a colon. Then click the OK button.

. Add a HOME variable to define a “home directory”.

Press the New... button below the UPPER listing window (not the one you just used). This
brings up a text entry as we saw before. Enter HOME for Variable name, For Variable value,
enter a path to some directory which you want to be your “working” directory, where Xic and
WRspice will look for startup files, etc. Enter the full path to this directory. Check spelling, Click
OK.

Finally, click the OK button at the bottom of the window, we’re done.

When a program is started from an icon, an icon property specifies the directory where the program

logically starts from. This is the apparent current directory seen by the user when running the program.
By default, this is usually sonething like “C:\”, which is not a good choice. The user should have a
directory dedicated for this, and the following procedure can be used to cause the programs started from
an icon to start in this directory.

. Go to the Start page, click on the circle with down arrow icon near the bottom-left corner. This

shifts to the Apps page.

. Find the XicTools program group. There should be entries for the programs that you have

installed.

. For each program:

(a) Click on the program icon with the RIGHT mouse button. An icon banner along the bottom
of the screen will appear.

(b) Click on Open File Location. This brings up a listing showing the XicTools programs.

(¢) Above the list, find the Properties icon and click it. This brings up a multi-page Properties
pop-up.
(d) In the Shortcut page, change the entry in the Start in entry area to a full directory path

to the directory where the program should start. This might be the same directory that you
used for the HOME environment variable.

(e) Then click the Apply button, and click OK if there is a confirmation pop-up.

This applies to the icon in the Apps page. Other icons can be set similarly.

2.4 Command Line Options

The following syntax applies when Xic is invoked from the command line. Arguments not recognized
as options are expected to be files containing layout information in supported formats. The first such
file (if any) will be loaded into the editor. Subsequent files can be loaded sequentially with the Open
command.

2.4. COMMAND LINE OPTIONS 27

xic [-F filetool_args] | [[-Bbatch_opt | -S[port] [-C | -C1] [-E]
[-Ggeometry_spec] [-Hdirectory_path] [-Kpassword] [-Lserverhost[:port]]
[-Rprefix_path] [-T[extension]] [toolkit_options] [filename ...]]

Xic will accept command line options common to applications designed around the GTK user interface
toolkit. In addition, there are a few command line options used exclusively by Xic. Options are keyed
by a hyphen ‘-’, and can not be grouped. Above, the square brackets indicate that the specification is
optional (which applies to all arguments), and the ‘|’ symbol is a logical “OR” operator indicating that
one may specify one of the surrounding forms.

-Bbatch_opt
Xic supports a batch mode of operation, where Xic will run a script or perform certain commands
without graphics. The form for this option is one of

-Bscriptfile [, args. . .]
-B-command[@arguments]

Batch mode will be described in 4.4.

The -C and -C1 options apply only to “pseudo-color” displays. These are displays with “8-bits”
or “256 colors”, found on older workstations. By default, Xic uses a large percentage of the system
colormap. If there are insufficient colormap entries available, Xic will create its own virtual colormap,
which is loaded when an Xic window has the keyboard focus. A problem is that some X terminals and
emulators apparently do not support virtual colormaps, or do so improperly. Also, the use of a virtual
colormap can be annoying. For these reasons, options have been provided to limit colormap usage, and
avoid creation of a virtual colormap.

-C

This option applies only in pseudo-color visual modes. The -C option, if given, will prevent Xic
from allocating private colors from the system colormap. Instead, it will use cells shared with other
applications. The colormap usage can be dramatically reduced by this option. The cost is 1) the
colors may not be quite “right” if the colormap is already heavily used by other applications, 2)
there is no blinking, 3) the colors can not be changed, and 4) highlighting may be difficult to see,
as for the -C1 option. A second copy of Xic running with the same technology file as the first will
use no additional colormap space. A virtual colormap is never produced if the -C option is given.
This option is recommended primarily for users who want to run multiple copies of Xic without
the virtual colormap.

-C1
This option applies only in pseudo-color visual modes. The -C1 option similarly saves colormap
space by directing Xic to allocate single-plane cells. By default, and if sufficient colormap space
is available, Xic will allocate “dual-plane” color cells for the layer rendering colors. These cells
contain two pixel values, one representing the color, and one which is white. The white pixel is
addressed during highlighting, and having one white pixel per layer ensures that the exclusive-or
drawing mode always produces white highlighting.

Single-plane color cells use half the colormap space of dual plane cells. However, the exclusive-or
highlighting is only guaranteed to be white over the background, and the highlighting can take
any color over the layers. This can sometimes be difficult to see.

The -E option signals Xic to start in electrical mode. The default is to start in physical mode.

28

CHAPTER 2. XIC CONFIGURATION AND STARTUP

This option must be the first given, and arguments that follow must be appropriate for the FileTool
utility (see Appendix G). The program will behave as the command-line FileTool program, which
can perform various manipulations and diagnostics on layout files.

If the xic, xicii, or xiv binary executable files (or Windows . exe equivalents) are copied or linked
under the name “filetool” (“filetool.exe” under Windows), the new program will behave as
a FileTool when invoked.

-Ggeometry_spec

The geometry_spec is an X-style window geometry specification, which allows the main window size
and position to be specified. There is no space between -G and the specification. The command
line specification will override the XIC_.GEOMETRY variable. The format of the geometry_spec is
described with the environment variable.

-Hdirectory_path

Giving this option will cause Xic to start in directory_path as the current working directory. Note
that there is no space between the “~H” and the directory path.

-Kpassword

The password used to enable use of encrypted scripts can be given to Xic on the command line with
this option. Note that there is no space between the “-K” and the password. As the password can
contain almost any character, if the password contains characters which could be misinterpreted
by the shell, the password should be quoted, e.g., =K’ password’ .

If no password is given to Xic with the -K option, a default password is effective. The default
password has a key that is compiled into the executable file, which can be changed with the
wrsetpass utility. The “factory” default password is

Default password: quwerty

The password set with the -K option overrides the default password. The password can also be set
with the SetKey script function.

If the .xicinit or .xicstart file, or the function library file, or a script run from batch mode
is encrypted, the encryption password must be given to Xic with the -K option, or be the default
password. As the password can be changed with the SetKey script function, User Menu scripts
can in principle use different passwords, which must be set before the script is executed.

-Rprefiz_path

If given, the prefiz_path internally replaces “/usr/local” when Xic composes directory paths to
search for startup files. This will override the value of the XT_PREFIX environment variable. This
is one method of specifying to Xic the startup file location, if the distribution was installed in
a non-default location. Under Windows, the installation location is saved in the registry and is
available to Xic, so Xic should be able to find its startup files without this option.

-S[port]

If the -S option is given, Xic will run in server mode. In this mode, Xic runs in the background as a
daemon process, serving requests through a communications port. This mode will be described in
4.5. The option can be immediately followed (no space) by a port number to use for connections.

-T[extension]

The -Textension option is used to designate a particular technology file, which is a file used by Xic
to initialize itself to a particular manufacturing process and set of user preferences. The technology
file has a name of the form xic_tech or xic_tech. extension, the base name is always “xic_tech”,
but there may be an arbitrary extension (characters other than ‘.’ following *.’). If no -T option is

2.4.

COMMAND LINE OPTIONS 29

given, then the xic_tech file is used. Otherwise, the extension given in the option will signal Xic
to use the technology file with the same extension. Note that it is allowable to start Xic without
any technology file, which is the effect of giving just the -T without any extension. Note that there
must not be any space between the T and the extension.

The graphical interface accepts the following options. These options are not processed by Xic, but are
intercepted by the graphics subsystem and affect the interface to the X-window system. The multiple
forms are equivalent.

-d dispname
-display dispname
--display dispname

This option specifies the name of the X display to use. The dispname is in the form

[host]:server|.screen)

The host is the host name of the physical display, server specifies the display server number, and
screen specifies the screen number. Either or both of the host and screen elements to the display
specification can be omitted. If host is omitted, the local display is assumed. If screen is omitted,
screen 0 is assumed (and the period is unnecessary). The colon and (display) server are necessary
in all cases. If no display is specified on the command line, the display is set to the value of the
environment variable DISPLAY.

-name string
--name string

This option provides an alternative name to the application, as known to the X window system.
The application name is used by X to apply resource specifications.

--class string

This option provides an alternative class name to the application, as known to the X window
system. The application class name is used by X to apply resource specifications.

-synchronous
--sync

This option indicates that requests to the X server should be sent synchronously, instead of asyn-
chronously. Since the X system normally buffers requests to the server, errors do not necessarily get
reported immediately after they occur. This option turns off the buffering so that the application
can be debugged more easily. It should never be used with a working program.

--no-xshm

In releases running under the X-Window system (Unix/Linux), Xic will use the MIT-SHM shared
memory extension if the X server supports this extension, and the server is running on the local
machine. This allows image data to be transferred to the X server via shared memory, which is
faster than the normal X socket interface. Screen updates may be faster as a result.

Giving the option --no-xshm on the command line will prevent use of this extension, if for some
reason this is necessary.

If this option is given, Xic will print a string containing three tokens and exit. The tokens are
version osname arch

for example “4.3.11 LinuxCentos7 x86_64".

30 CHAPTER 2. XIC CONFIGURATION AND STARTUP

--vv
If this option is given, Xic will print a CVS-style tag string and exit. The format is, for exmple,
“xic-4-3-17.

--vb
If this option is given, Xic will print the build date and exit.

Any words found in the command line that are not recognized as options will be interpreted as files
to load into Xic for editing. The files will be loaded in order of their appearance, with the first file loaded
at startup, and the other files loaded in response to an Open command.

2.5 Xic Environment Variables

Environment variables are keyword /value pairs that are made available to an application by the command
shell or operating system. The value of an environment variable is a text string, which may be empty.
Environment variables can be set by the user to control various defaults in Xic.

2.5.1 Unix/Linux

Environment variables are maintained by the user’s command shell. It is often convenient to set envi-
ronment variables in a shell startup file such as .cshrc or .login for the C-shell or .profile for the
Bourne shell. These files reside in the user’s home directory. See the manual page for your shell for more
information.

For the C-shell, the command that sets an environment variable is
setenv variable_name [value]
For example,
setenv XT_DUMMY "hello world!"

Note that if the value contains white space, it should be quoted. Note also that it is not necessary to
have a value, in which case the variable acts as a boolean (set or not set).

In the C-shell, one can use setenv without arguments, or printenv, to list all of the environment
variables currently set.

For a modern Bourne-type shell, such as bash, the corresponding command is
export variable_name[=value]

In this type of shell one can list the variables currently set by giving the set command with no arguments.

2.5.2 Microsoft Windows

Under Windows, environment variables can be set in a DOS box with the set command before starting
the program from the command line, or in the AUTOEXEC.BAT file, or from the System entry in the
Control Panel. Only the latter two methods work if the programs are started from an icon. If using
a Cygwin bash-box, environment variables can be set in the startup file as under Unix.

2.5. XIC ENVIRONMENT VARIABLES 31

2.5.3 XicTools Environment Variables

The following environment variables are used by all XicTools programs.

CYGWIN_BIN
This variable applies only when running under Microsoft Windows, and Cygwin is installed. Cyg-
win is Linux-like environment and tool set which is a very useful adjunct to Windows. In particular,
it provides a bash shell with standard Linux commands, and an X server, among many installable
features.

XicTools programs will in some cases, such as when popping up a shell window, look for a Cygwin
program. If the Cygwin program binaries (.exe files) are located in /bin or /cygwin/bin on
the current disk drive, they will be found automatically. Otherwise, this variable can be set to
the Windows path, including a drive letter if necessary, to the directory containing the Cygwin
binaries. This is not necessarily the path one perceives from within Cygwin, since the XicTools
programs do not know about the Cygwin mount points or symbolic links. The path is the one that
would be seen from a DOS box, with forward or reverse slash directory separators.

XT_PREFIX
All of the XicTools programs respond to the XT_PREFIX environment variable. When the tools are
installed in a non-standard location, i.e., other than /usr/local, this can be set to the directory
prefix which effectively replaces “/usr/local”, and the programs will be able to access the instal-
lation library files without further directives. The Xic -R command line option can also be used
for this purpose. This should not be needed under Windows, as the Registry provides the default
paths.

XT_HOMEDIR
Under Windows, the user’s “home” directory is determined by looking at environment variables.

In Linux, the HOME environment variable is set the the user’s home directory, and this is also
true under Windows if using a Linux emulation package such as Cygwin or MSYS. However, in
this case HOME will be relative to the file system as seen within the emulator, and not the actual
Windows file system as seen in Xic or WRspice which are Windows-native programs. Therefor, the
HOME environment variable is ignored under Windows.

Instead, the programs will first look for XT_HOMEDIR. This should be set to the Windows path to
the user’s MSYS2 or Cygwin home directory. For example, this can be done from the bash_profile
file by adding a line

export XT_HOMEDIR=c:/msys64/home/yourlogin

Setting this will allow Xic and WRspice to find files in the user’s MSYS2 home directory, even
though the programs are Windows native and don’t know the MSYS2 paths.

The deprecated XIC_.START_DIR variable is checked next, and if found its value is taken as the
user’s home directory in the same manner.

If not found, the HOMEDIR and HOMEPATH variables, if both are found, are concatenated to yield
the home directory path. In the unlikely event that these are not set, the USERPROFILE variable
is checked, and if all else fails, “C:\” is assumed. The HOMEDIR/HOMEPATH and USERPROFILE
variables are set by Windows, at least in some Windows versions.

Under other operating systems, the home directory is well-defined and is obtained from operating
system calls.

Under Windows, if Xic finds itself in the C:\ directory on startup, it will change the working
directory to the home directory. This is the default when starting from the Windows Start Menu
or otherwise from an icon, unless the icon property is changed.

32 CHAPTER 2. XIC CONFIGURATION AND STARTUP

XTNETDEBUG
If the variable XTNETDEBUG is defined, Xic and WRspice will echo interprocess messages sent and
received to the console. In server mode, Xic will not go into the background, but will remain in
the foreground, printing status messages while servicing requests.

Linux and FreeBSD releases can use an included local memory allocation package. In earlier Xic
releases, this allocator, rather than the allocator provided by the operating system, was used by
default. In 32-bit releases, the local allocator was often able to allocate more memory than the
allocators provided by the operating system. It also provided custom error reporting and statistics.

This feature is now disabled, as in modern operating systems there is dubious benefit, and it can

produce stability problems in some cases. However, if this variable is set in the environment when
Xic is started, the local allocator will be used. The interested user is encouraged to experiment.

XT_SYSTEM_MALLOC
This variable was once used to disable the internal local memory allocator, which in earlier releases
was enabled by default. Currently, this variable is ignored.

XT_GUI_.COMPACT
When set, no extra space is allowed around pushbutton contents in the graphical interface. Such
space can cause side menu button images to be truncated on low-resolution displays if the theme
in use imposes too much space. Setting this variable is a quick fix for this problem, though one
could also change the theme.

2.5.4 Xic Environment Variables
The following paragraphs describe the environment variables which are relevant to Xic.

FORCE_XICII
If this variable is set when Xic starts, the program will run as Xicll. Xicll was a reduced feature set
(layout editor only) version of Xic available at lower cost. Operating in this mode may simplify
things for some users. One can create an “xicii” program with the following shell script:

#! /bin/sh
FORCE_XICII=1 xic $x*

FORCE_XIV
If this variable is set when Xic starts, the program will run as Xiv. Xiv was a reduced feature set
(layout viewer only) version of Xic available at lower cost. Operating in this mode may simplify
things for some users. One can create an “xiv” program with the following shell script:

#! /bin/sh
FORCE_XIV=1 xic $x*

XIC_HOME
This environment variable applies only to the Xic program. If found in the environment when Xic
starts, it is expected to contain a path to the Xic installation area or equivalent, which defaults
to “/usr/local/xictools/xic”. This overrides XT_PREFIX if that environment variable is also
found.

There is an important subtlety when using this variable. Although it allows Xic to find its startup
files anywhere, only the directory structure implied by XT_PREFIX, that is, for Xic,

2.5. XIC ENVIRONMENT VARIABLES 33

$XT_PREFIX/xictools/xic

is compatible with the program installation script. The variable is perhaps useful for pointing Xic
toward a secondary set of startup files, perhaps heavily customized by the user, which may reside
in an arbitrary location.

XIC_.GEOMETRY
This can be set to an X-style geometry string, to specify the default size and position of the Xic
main window.

If the geometry has been specified, Xic will use it to position and size the main window (if the win-
dow manager permits this). The geometry specification, used to define window size and position,
is a string in the form

widthxheight+zoff +yoff

[13e))

where width, height, zoff, and yoff are numbers representing screen pixels. The “x” or “X” between
the width and height is literal. A plus sign ‘+’ or minus sign ‘—’ must appear ahead of zoff and

yolf-

+zoff

The left edge of the window is to be placed zoff pixels in from the left edge of the screen.
—zoff

The right edge of the window is to be placed zoff pixels in from the right edge of the screen.
+yoff

The top edge of the window is to be yoff pixels below the top edge of the screen.

—yoff
The bottom edge of the window is to be yoff pixels above the bottom edge of the screen.

XIC_TECH_DIR
The value is a path to a directory. If given, the directory is searched for the technology file, if not
found in the current directory, and before other locations are checked.

XIC_.TMP_DIR, TMPDIR
By default, Xic uses the directory /tmp for temporary files. In some installations, this directory
may be too small to accommodate the large files needed by Xic, for example when producing hard
copy plots. An alternative directory for temporary files can be specified with the XIC_TMP_DIR en-
vironment variable (which has precedence) or with the TMPDIR variable, which is a Unix standard.
One of these should be set to a path to a directory to use for temporary files, if necessary.

XIC_LOGDIR
The variable XIC_LOGDIR can be set to a path to a directory which will be used to store certain
log files produced while Xic is running. The location used for the log files is the first defined of
XIC_LOGDIR, XIC_.TMP_DIR, TMPDIR, or /tmp if none of these variables is defined. The log files

are removed on normal exit.

XIC_.MENU_RIGHT
If the variable XIC_.MENU_RIGHT is defined in the environment, Xic will place the side menu and
layer table to the right of the main window. The default to to place the menu at the left.

XIC_HORIZ_.BUTTONS
If this variable is set in the environment when Xic starts, the buttons in the side menu will be
arrayed horizontally across the top of the main window instead.

34 CHAPTER 2. XIC CONFIGURATION AND STARTUP

XIC_PLUGIN_DBG
If this variable is set in the environment when Xic starts, error messages concerning plug-in loading
will be printed in the console window. Without this set, Xic will simply silently not load a plug-in
if an error occurs. These diagnostic messages can help identify why the plug-in is not being loaded,
and are instrumental in tracking down problems when the user expects success.

This variable is deprecated. Under Windows, it is interpreted in the same manner as XT_HOMEDIR.

XIC_EXIT_CMD
If the environment variable XIC_EXIT_CMD is set to a command string, that command will be
executed when Xic exits. If the command string contains spaces, the command should be quoted.
For example, using

setenv XIC_EXIT_CMD "/usr/games/fortune -o"
may print a rude limerick on some installations. This feature may have less frivolous uses, however.

XIC_SYM_PATH, XIC_LIB_PATH, XIC_HLP_PATH, XIC_.SCR_PATH
There are four additional environment variables used to specify locations where Xic is to look for
certain types of files. These variables are XIC_.SYM_PATH, XIC_LIB_PATH, XIC_HLP_PATH, and
XIC_SCR_PATH. These variables are described in the next section.

The internal default values for the paths assume that the installation location is the standard
place under /usr/local, or if the XT_PREFIX variable is set, that value will be taken instead of
“/usr/local”.

XIC_DOCS_DIR
The environment variable XIC_.DOCS_DIR can be set to an alternate location for the archive of
release notes. This location is searched in the Release Notes command in the Help Menu. The
default location is /usr/local/xictools/xic/docs, or, if XT_PREFIX is set, its value will replace
/usr/local.

XIC_OASO_PATH
Plugins are normally found in the plugins directory in the installation area, which by default is

/usr/local/xictools/xic/plugins

This variable can be set to the full path to the OpenAccess plug-in, which Xic will attempt to load
on program startup instead of looking in the default location.

XIC_PYSO_PATH
Plugins are normally found in the plugins directory in the installation area, which by default is

/usr/local/xictools/xic/plugins

This variable can be set to the full path to the Python plug-in, which Xic will attempt to load on
program startup instead of looking in the default location.

XIC_TCLSO_PATH
Plugins are normally found in the plugins directory in the installation area, which by default is

/usr/local/xictools/xic/plugins

This variable can be set to the full path to the TclTk or Tcl-only plug-in, which Xic will attempt
to load on program startup instead of looking in the default location.

2.6. XIC SEARCH PATHS 35

XIC_LIBRARY_PATH
This applies to Linux and macOS only. If set, the value will be prepended to the LD_LIBRARY_PATH
in the Xic wrapper script. This can be used to point to installed libraries needed for plugins, for
example the OpenAccess libraries, without having to set LD_LIBRARY PATH in the environment.

XIC_NO_MAC_MENU
(Qt macOS only) By default, Xic will use the Apple menu in the upper left of the screen. This has
no tooltips and can not be selected programmatically. It this variable is set, Xic will use Linux-style
menus in the main window which behave as they do in Linux, enabling access to macros.

XICNOMAIL
If the variable XICNOMAIL is set, no mail will be sent during a crash. If a fatal error is encountered,
a file named “gdbout” is created in the current directory, which contains a stack backtrace from
the stack frame of the error. Despite the name, the file is generated internally on all platforms,
and no longer makes use of the gdb program.

By default, this file will be emailed to Whiteley Research for analysis. However, the emailing can
be suppressed by setting this variable in the environment. The gdbout file is produced in any case,
and would be very useful to Whiteley Research for fixing program bugs.

XTNOMAIL
This has the same effect as XICNOMAIL but also prevents email from the WRspice program.

SPICE_HOST, SPICE_EXEC_DIR, SPICE_.EXEC_NAME

When connecting to SPICE in the run command, the SPICE_HOST variable is used to set the name
of a remote SPICE host which provides SPICE service. The name can optionally be followed by a
colon and a port number, if a non-default port is used by the SPICE server. The SPICE_EXEC_DIR
environment variable provides the directory which contains the wrspice executable, which may
need to be identified to Xic if it is other than /usr/local/bin. The SPICE_LEXEC_NAME envi-
ronment variable can be used to provide an alternate name for the wrspice executable, if it has
been changed. The default is, of course, “wrspice”. Each or these environment variables can be
overridden by a corresponding internal variable, which can be set with the !set command.

IMSAVE_PATH
The printing interface includes a driver for generating image files in various formats. A few formats
are handled internally, however vastly more are available through other software that may be
available on the system. The driver can usually locate these programs by looking in standard
places, however, if the programs exist but can’t be located, this variable can be set to a colon-
separated list of directories to search for the executables. This applies to Unix/Linux/macOS only.
See the description of the Image print driver in 8.6.2 for more information.

2.6 Xic Search Paths

There are four search paths used by Xic. Search paths are lists of directories, which are searched in
left-to-right order for files of a particular type. In addition to search paths, Xic provides a “redirect file”
mechanism for finding files, which supplements the search path. If a specific file is being sought, the first
file with matching name is used. The format used for search path strings can be one of two forms:

Unix-shell style: (directoryl directory2 ... directoryN)
The tokens are separated by white space. If white space appears in a directory entry, that entry
should be single or double quoted. The entire path should be enclosed in parentheses. Space
between the parentheses and directory names is optional.

36 CHAPTER 2. XIC CONFIGURATION AND STARTUP

Examples:

C .)
(/usr/local/bin "/Program Files/xic/stuff" ~/work)

This format is the same in Windows and Unix releases, however in Windows, back and forward
slashes are equivalent, and the drive specifier can appear in the entries.

Traditional search path: directory! :directory2:...:directoryN
The entries are separated by a special character, which is a colon ‘:” in Unix/Linux, and a semicolon
“;7 in Windows. There should be no white space that is not part of a file/directory name. An entry
should be single or double quoted if it contains the separation character. In the examples here, a
colon is used, which in Windows must be converted to a semicolon. The separation character is
optional at the front or end of the path, unless it is needed to delimit white space that is part of
an entry.

Examples:

/usr/local/bin:/Program Files/xic/stuff:~/work

In earlier Xic releases, parsing was fairly loose, and in particular hybrids of the two formats would
be accepted. This is not true in the present release, due to support for white space in path entries. The
format used in a path string must be consistent.

The following special symbols are recognized in entries:

The current directory

The parent directory of the current directory

The user’s home directory (Unix) or the content of the
HOME environment variable (Windows)

joe | The home directory of user joe (Unix only, no substitution
in Windows)

The four paths are the design data path, the library path, the help path, and the script path.
The design data path is used to locate design data files, consisting of native cell, archive, and library
files. The library path is used to locate the technology file, device and model libraries, and various
other configuration files. The help path contains files for the help system, and the script path contains
executable scripts and libraries which appear as commands in the User Menu.

These paths can be set in the technology file, the .xicinit or .xicstart initialization files, or by
use of environment variables, or with the !set command. A specification in the .xicinit will override
specification in the environment, which is in turn superseded by a specification in the technology file, and
the .xicstart file supersedes the technology file. Once Xic is running, the !set command can be used
to set or examine the search paths. Similar commands exist in the script interpreter interface function
library.

In addition, the design data path is augmented with any path preceding a native cell file to open
in the Open command. By default, the path is added to the beginning of the present design data
path. For example, suppose a design hierarchy exists in the directory /usr/work. If the user enters
/usr/work/maincell in response to the prompt which appears after pressing the Open button, then
the file maincell is opened for editing, and the directory /usr/work is added to the front of the design
data path. Once the design data path is updated, the cells in that path can be accessed by their base file
name only. The treatment of any path which is given with a native cell to open in the Open command
can be altered with the NoReadExclusive and AddToBack variables.

2.6. XIC SEARCH PATHS 37

The use of paths facilitates user customization of Xic, particularly when the directories used in the
system installation are not writable by the user. By installing a different search path, the user can
augment or substitute for the system default files and libraries.

Below are the environment variable names and internal defaults:

Design Data Path

variable: Path

environment: XIC_.SYM_PATH

default: C .
Library Path

variable: LibPath

environment: XIC_LIB_PATH

default: (. /usr/local/xictools/xic/startup)
HelpPath

variable: HlpPath

environment: XIC_HLP_PATH

default: (/usr/local/xictools/xic/help)
ScriptPath

variable: ScriptPath

environment: XIC_SCR_PATH

default: (/usr/local/xictools/xic/scripts)

If the XT_PREFIX environment variable is set, its value will be taken instead of “/usr/local” in the
defaults.

The “variable” field in the table above provides the name of the variable, which can be altered with
the !set command to set the path. Unlike other variables, these are always defined and cannot be unset.
The same name is also used as a keyword in the technology file.

Files containing cell data, whether Xic native, GDSII, or some other format, are expected to be found
in a directory along the design data search path. The first file found matching the name requested is

opened. Normally, it is desirable to include the current directory ‘.” in the design data path, otherwise
files located in the current directory will not be found.

The technology file, device.1lib file, model.1ib file and other model files are found along the library
path.

The search behavior of the library path is slightly different from the other paths, in that an attempt
is made to open a file in the current directory before looking through the search directories. Thus, the
current directory ‘.” is always logically at the head of the library path. There is no problem if ‘.’ is also
explicitly defined in the path. A consequence is that startup files that exist in the current directory will

always have precedence over files located in other directories.

Each directory in the help path is expected to contain help database files. These files use names with
an extension “.hlp”. The directories may also contain graphics files used by the help system. Changing
this path allows the user to provide their own help files for the custom functions (scripts) which appear
in the User Menu, for example, or to add information topics, such as about local design rules, to the
database.

The scripts and related files are found along the script path. Only files which have the extension
“.scr” are taken as scripts. The directories in this path may also contain script menus, with extension

38 CHAPTER 2. XIC CONFIGURATION AND STARTUP

“ 7

.scm”, and files named “library” which contain subroutines used by other scripts. Whenever the
script path is changed, a rehash is performed, i.e., the User Menu is rebuilt.

2.7 Redirect Files

Redirect files are an adjunct to the search path mechanism used by Xic for finding files. Redirect files
are files created by the user, that tell Xic about additional locations to search for input files.

Redirect files must be named “xt_redirect”, and are text files with the following format and
properties:

Lines that start with ‘4’ or contain only white space are ignored.

Each line otherwise contains one or more directory paths, separated by white space. If a directory
path contains white space or other special characters, it should be double-quoted (i.e., as "...").

Multiple directories can be provided on a single line, or in different lines.

Paths that are not rooted are taken as relative to the directory containing the redirect file.

Paths that do not point to an existing directory are silently ignored.

When searching a directory, the directories found in a redirect file are also searched, in order, after
the current directory. The search is recursive, so that arbitrarily deep hierarchies can be searched via
the redirect file mechanism.

With redirect files, only the top directory of a hierarchy needs to be included in the search path (or
given explicitly). This can be very convenient for organizing collections of native cell files, for example.

The Path Files Listing panel from the File Menu will list files found through the redirect files on
separate pages for each redirected directory, just as for the directories contained in the search path.

2.8 Initialization Files

When Xic is started, a number of files are read. This section describes these files, and the order of access.
None or these files is required to exist.

Prior releases of Xic could be configured to check for the availability of program updates on startup.
There was also provision for display of a message if one was “broadcast” from the Whiteley Research
web site. This latter feature was never used, and neither feature is currently supported in Xic. Thus,
there is no longer a network access attempt on program startup, which may save time.

Program updates are handled in the help system (see 6.1.1), for all of the XicTools packages. Either
the help system built into Xic and WRspice, or the stand-alone mozy program can be used to check for,
download, and install updates. Giving the keyword “:xt_pkgs” will display a page that provides update
information and download/install buttons.

If a new Xic release is run for the first time, the release notes will appear in a pop-up window, as
if the Notes button in the Help menu was pressed. There is a file in the user’s .wr_cache directory
named xic_current _release that contains a release number. If, when Xic starts, this file is missing
or the release number is not current, Xic will show the release notes and update the file. If the release
numbers match, there is no action.

2.8. INITIALIZATION FILES 39

On installation, a default configuration is provided for Xic. The user will need to reconfigure Xic
for their requirements. This reconfiguration is accomplished primarily by editing a custom technology
file, which Xic reads on startup, and also by possibly setting some of the environment variables before
starting Xic. These variables can be set in the user’s shell startup file, as appropriate for the user’s
operating system.

The default technology file, plus several other files needed, are placed in a system-wide location
on installation, usually /usr/local/xictools/xic/startup, which is included in library path. This
directory is typically set to be read-only, thus the user must establish an alternative location in their own
directory tree for customized startup files, and add this to the library path to the left of or instead of
the default location. The default technology file provided with Xic is for generic MOSIS scalable CMOS.

X resource file
As the program starts and the graphics is initialized, the X window system may access various files
for resource resetting. See the X documentation for details. The attribute (non-layer) colors used
in Xic can be set through the resource mechanism (see A.10), but one must take care that these
are not reset in the technology file.

.xicinit file
Next, an “.xicinit” initialization script, if present, will be read and executed. The user may
create this file, it is not present by default. The initialization script uses exactly the same format
as other script files, as are normally found along the script search path. The script can set user
preferences or otherwise modify Xic. Since this file is read before other files, it can be used to set
the search paths used to find other startup files, in particular the technology file. The base name
for the script is “.xicinit”, and the same extension as the technology files can be present.

If, for example, Xic is started with an extension “.ext” (-Text given on the command line), Xic will
look for files ./.xicinit.ext and $HOME/.xicinit.ext, then ./.xicinit and $HOME/.xicinit,
in that order, where “$HOME” indicates the user’s home directory. The first file found will be
executed. If Xic is started without a technology file extension, only the script files without an
extension will be executed.

Technology file
If a technology file is being used, Xic will read the file at this point, before reading the user’s script
and macro files (below).

The technology file contains all of the information Xic needs for physical and electrical layout,
extraction, and design rule checking, plus information on hard copy support, printer commands,
and the like. It also provides values for a number of presentation attributes including the colors
used on-screen.

The Save Tech button in the Attributes Menu creates an updated copy of the technology file
in the current directory. Most of the changes to an existing technology file can be performed from
within Xic, though some text editing may be required on occasion.

.xicstart file
Next, an initialization script, if present, will be read and executed. This file can be created by the
user, is is not present by default. The initialization script uses exactly the same format as other
script files, as are normally found along the script search path. The script can set user preferences
or otherwise modify Xic, and, unlike the similar “.xicinit” file, performs these commands after
the technology file has been read. The base name for the script is “.xicstart”, and the same
extension as the technology files can be present.

If, for example, Xic is started with an extension “.ext” (-Text given on the command line), Xic
will look for the files ./.xicstart.ext and $HOME/.xicstart.ext, and then ./.xicstart and

40 CHAPTER 2. XIC CONFIGURATION AND STARTUP

$HOME/ .xicstart, in that order, where “$HOME” indicates the user’s home directory. The first file
found will be executed. If Xic is started without a technology file extension, only the script files
without an extension will be executed.

xic_stipples file
The xic_stipples file is read, which initializes the default fill pattern registers in the fill pattern
editor in the Attributes Menu. Like the device and model libraries, the technology file, font
files, etc., the library search path is used to locate this file. A default stipple file is provided, and
new files can be obtained from the Dump Defs button in the Fill Pattern Editor.

.xicmacros file
Next, Xic will attempt to read a file with the base name “.xicmacros”, and the same extension
as the technology files can be present. This file does not exist by default, but is created if the
user defines macro definitions which are mapped to key presses, as generated by the Key Map
command in the Attributes Menu. The .xicmacros file is rarely if ever directly edited by the
user.

3
)

If, for example, Xic is started with an extension “.ext” (-Text given on the command line),
Xic will look for files ./.xicmacros.ext and $HOME/.xicmacros.ext, then ./.xicmacros and
$HOME/ .xicmacros, in that order, where “$HOME” indicates the user’s home directory. The first
file found will be read. If Xic is started without a technology file extension, only the script files
without an extension will be read.

.xic_font file
If a file named “xic_font” is found in the library search path, the file is read to obtain the text
font used for on-screen label text. This file is created by the user from the Dump Vector Font
button in the Font Selection panel, and is subsequently editing to the user’s requirements. The
default font is hard-coded internally.

.xic_logofont file
If a file named “xic_logofont” is found in the library search path, the file is read to obtain the text
font used for the logo (physical text) command. This file is created by the user from the Dump
Vector Font button in the Logo Font Setup panel, and is subsequently editing to the user’s
requirements. The default font is hard-coded internally.

xicmesg file
This is a text file providing the legal disclaimer. It once supplied text for the About window, but
is no longer used for that purpose.

Device Libraries
As needed, Xic will also read the device library (device.lib) file, search and map the device
models and help files, and open the first command line file for editing. The device library file
supplies the device templates used in electrical mode. The model files provide SPICE models used
for generating SPICE output. These files are read the first time access is required. Defaults are
provided for these files, but the user will very likely need custom device and model library files.

2.9 Log Files and Error Reporting

There are several methods by which error and warning messages are presented to the user. In many
commands, particularly those that use input from the prompt line, the prompt line is used to print
messages informing the user of incorrect input, and general command status. These messages are
intended to direct the user toward correct usage of the command.

2.9. LOG FILES AND ERROR REPORTING 41

More serious errors are reported in a pop-up window. There are two types of messages: those that
are logged, and those that aren’t. If a message is logged, it is assigned a unique sequence number, and
is saved in the xic_error.log file discussed below.

The same pop-up window is generally used for both types of message. Most error and warning
messages are logged. A few messages are unlogged, these generally report an immediate command
failure due to some condition such as lack of a current cell, or something such as a help keyword not
found message which is probably not worth logging.

The text window presenting an unlogged message will contain only that message. One of the disad-
vantages of unlogged messages is if several are emitted, only the most recent is shown in the window,
the others are lost. This is unlikely to happen in current Xic releases.

The text window will display the sequence number and text of an emitted logged message, and some
number (currently hard-coded as 20) of the previously emitted messages. One can scroll through the list
to find previously emitted messages, which unlike in the unlogged case still exist.

The error message window contains two buttons in addition to the Dismiss button.

Save Text
This allows the user to save the text shown in the pop-up to a file. This may be useful for
documenting errors seen for bug reporting, and for other purposes.

Show Error Log
This button will bring up a file browser window loaded with the xic_error.log file. This allows
the user to browse all errors, in sequence. This can be used to revisit old errors that have scrolled
off the end of the list in the pop-up error window.

2.9.1 Log Files

While Xic is running, various log files are produced. These files contain a record of operations and errors,
which may be useful for debugging purposes. Ordinarily, though, many of the log files are rarely used,
and these files are stored in a temporary directory which is removed when Xic exits normally. Other log
files, such as DRC error reports, are saved in the current directory and are not removed on exit.

Below is a listing of the log files that are saved in a temporary directory. The files in this directory
can be browsed from within Xic with the Log Files button in the Help Menu. In addition, a button
in the error pop-up allows the xic_error.log to be viewed.

The Logging Options panel from the Logging button in the Help Menu selects whether or
not certain operations are logged, such as those done during extraction. This will optionally produce
additional log files not listed below.

xic_run.log

This file contains a listing of key press/release and mouse button press/release events, in a format
which can be understood as script instructions. Although presently this feature in incomplete, the
instructions can be used to “play back” the current session by executing the log file as a script. The
file is limited in size to about 100Kb, at which point the file is given a “.0” extension and a new
file is started. If Xic should ever crash or otherwise misbehave, the current xic_run.log should be
included with the bug report sent to Whiteley Research. This will greatly help in tracking down
the problem.

xic_error.log
This file contains a list of error messages generated during the session. The previous 20 errors are

42 CHAPTER 2. XIC CONFIGURATION AND STARTUP

displayed in the error pop-up window in Xic, but the xic_error.log file retains a complete record.
This file may also be of use in diagnosing problems within Xic, and should be included with the
bug report if it contains an entry relevant to the problem.

xic_mem_errors.log
This file, used under Unix/Linux only, is generated or appended to if memory corruption is
detected. If this file exists when Xic exits, it will be emailed to Whiteley Research (by default).
However, if either XICNOMAIL or XTNOMAIL is set in the environment, the file will instead be
moved to the current directory, and a message will be printed requesting that the user mail it
to Whiteley Research. Memory corruption should never occur, and this file contains stack trace
information that will help identify the problem.

read_cgx.log

read_cif.log

read_gds.log

read_oas.log

read native.log
These files contain messages emitted when a file is read into Xic for editing. The file name generated
depends on the type of file read.

write_cgx.log

write_cif.log

write_gds.log

write_oas.log

write native.log
These files contain messages emitted when a file is written to disk. The file name generated depends
on the type of file written.

convert_cgx.log

convert_cif.log

convert_gds.log

convert_oas.log

convert_native.log
These files contain messages emitted when a file is converted directly to another format through
the commands in the Convert Menu.

The size of the log files that grow progressively as Xic is running are size-limited to about 100Kb. If
the file exceeds this size, the file is moved to the same name with a “.0” extension, and the original log
file is reopened. Thus, a maximum of 200Kb per log of information is retained.

The environment variable XIC_LOGDIR can be set to an existing directory that will be used to store
the log files. The log files will be placed in a directory

logdir/xic.pid

where logdir is the first defined of the environment variables XIC_LOGDIR, XIC_.TMP_DIR, TMPDIR, or
defaults to “/tmp”. The pid is the process id of the Xic process. This directory is created when Xic
starts, and is deleted when Xic terminates normally. If Xic terminates abnormally, the log files will still
be around for inspection. If a user needs to look at a log file after running Xic, the file must be copied

to another location before exiting Xic. The !logfiles command can be used to read logfiles from within
Xic.

This mechanism lets multiple copies of Xic run on the same machine from any directory, and minimizes
the pollution of the file system and in particular the current directory with a lot of generally unused log
files.

2.10. PLUG-INS 43

2.9.2 Abnormal Termination Logging

If Xic experiences an internal memory referencing error, Xic will terminate. Such occurrences should
be rare to nonexistent, however this is the ideal and generally not the reality. During a “panic”, the
following will happen:

A subdirectory will be created in the current directory, with the name “panic.pid”, where pid is
the process id number of the running program.

e All cells in memory that have the modified flag set will be written into this directory. The files will
be in the original file format. Cells created in Xic and never saved will be saved in native format.
Although it can not be guaranteed that these files are not corrupted by whatever error occurred,
generally they are clean and accurately reflect unsaved work. After a thorough check, they can be
copied back to the original file name.

e A file named “xic_panic.log” is created in the current directory. This contains the log messages
emitted while the modified cells are being dumped, and other information.

e The log files that are normally removed after normal exit are retained. The location of the log files
is given in the xic_panic.log file.

e Unless either of the environment variables XICNOMAIL or XTNOMAIL is set, a stack trace is emailed
to Whiteley Research, which will be analyzed to resolve the cause of the fault, and if possible the
problem will be fixed in the next Xic release. The file that is emailed is named “gdbout”. The file
will be created in the current directory.

2.10 Plug-Ins

A “plug-in” is a software library that is read into a running program, that provides additional features or
capability. Within Xic, plug-ins provide optional support for OpenAccess, and the Python and Tck/Tk
languages. The plug-in provides an interface to external libraries that may or not be present on the
user’s computer. If the needed libraries are present, the plug-in will be loaded into Xic on program
startup, and a message, such as

“Using Tcl/Tk (tcltk.so)”

will appear in the console among the text generated on program startup. If the needed libraries are
not found, the plug-in is not loaded, but Xic will run normally except that the plug-in’s features will be
absent.

At present, plug-ins are supported on all platforms except for Microsoft Windows. Windows does not
provide the type of shared library technology needed for plug-ins. Although a similar capability could
be instituted, there are many substantial issues and it is not clear if it is worth the development effort.

Plug-ins are distributed as shared library code, and are found in the plugins sub-directory in the
distribution area, i.e.,

prefiz/xictools/xic/plugins

The plug-in files are version-specific, and will work only with the program from the same distribution
file. Of course, Xic needs to be able to find its startup files for the plug-ins to be available. If Xic is not

44 CHAPTER 2. XIC CONFIGURATION AND STARTUP

installed in the standard location, the XT_PREFIX environment variable should be set to enable Xic to
find its startup files.

Normally, if a plug-in is not loaded, there is no message. If, however, the XIC_PLUGIN_DBG environ-
ment variable is set, diagnostic messages will be printed. These can help identify why the plug-in is not
being loaded, and are instrumental in tracking down problems when the user expects success.

Lack of success loading a plug-in and generally due to the inability of the plug-in code to find the
shared libraries needed on the host computer. Unless the library is “standard” on the system, which
may be true of Python, then it will be necessary to use the LD_LIBRARY_PATH environment variable to
specify where to look for the libraries. The libraries much match the address size (32 or 64 bit) of the
running Xic program.

2.11 OpenAccess Support

This interface is presently not available under Microsoft Windows.

The OpenAccess plug-in is not provided with Xic packages, the user must build this
from source, which requires OpenAccess source code.

OpenAccess is a semi-open-source database for CAD/EDA data. It is used by Cadence Virtuoso,
Synopsys Custom Compiler, and by many other tools. It provides a commonality among tools from
different vendors, and is intended to facilitate seamless integration of tools from different vendors into
a process flow. OpenAccess is distributed by Si2 (www.si2.org). Source code and binary distributions
are available for a number of operating systems, to registered users and coalition members.

Xic can connect to an OpenAccess (OA) database through a plug-in. Since there is no default location
for OA, the user must set the XIC_LIBRARY_PATH or the LD_LIBRARY_PATH variable to include the library
location in the search path during program loading. This is most conveniently done in the user’s shell
startup script.

Probably, the main interest in using OA is for limited compatibility with Cadence Virtuoso. There
are two levels here. The first level is compatibility with the OA system. This is basically complete,
as any Xic design can be saved to and read from OA without data loss or change. The second level
is compatibility with the conventions and methods used in the Virtuoso product, much of which is
proprietary or undocumented. This is a much tougher nut to crack. Presently, there is fairly reasonable
capability of taking Virtuoso designs into Xic, but the reverse is not true. Presently, physical (layout
view) data from Xic can be read by Virtuoso and should appear correct, however there is no netlist
information or connection to a schematic. It is as if the layout view was read from a GDSII file.
Schematic and schematic symbol views from Xic can not be read as anything but garbage by Virtuoso.
There are plans for a data translation stage in the future to possibly adapt Xic schematics to Virtuoso
format.

Likewise, The plug-in allows a direct interface to Synopsys Custom Compiler, and supports Python-
based PCells including stretch handle and abutment protocols.

When the OpenAccess plug-in is loaded, there are several changes to Xic.
1. There is an OpenAccess Libs entry added to the File Menu. Pressing this will bring up the
OpenAccess Libraries panel, which provides access to the existing OpenAccess design data.

2. A number of “bang” commands (text-mode commands that start with '’) are made available.
These commands are typed into the prompt line to start. Much of the functionality of these
commands is also available graphically in the panel.

2.11. OPENACCESS SUPPORT 45

loaversion
loanewlib
loabrand
loatech
loasave
loaload
loadelete

In addition, the standard commands for reading and writing design data become operable with
OpenAccess data. When specifying a cell, one provides two words: the OpenAccess library name and
the cell name.

It is not possible to write to an OA library unless the library has been “branded” by Xic. By default,
libraries created in Xic are writable from Xic, libraries created by other tools are not. The read-only
status from Xic of any library can be set from the OpenAccess Libraries panel, or with the !oabrand
command.

2.11.1 Representing Xic Cells in OpenAccess

When an Xic cell is saved in OpenAccess, up to three views may be created. The user has specified a
library name where the views will be saved, and of course the cell name. Some write commands allow
the user to save a cell under a different name.

If the cell contains physical data, this will be saved in a view named “layout” of OpenAccess view
type “maskLayout”. If the cell contains electrical data, the schematic will be saved in a view named
“schematic” of view type “schematic”. If a symbolic representation has been defined, this will be
saved in a view named “symbol” of OpenAccess view type “schematicSymbol”. This latter view can
only exist, as part of an Xic cell representation, if a schematic view also exists. Reading or writing an
Xic cell will involving translating each of these views that exist.

This group of properties applies to the OpenAccess interface.

stdvia property, number 7160
This property is applied to standard via sub-masters and instances, and is used by the translator
to convert OpenAccess standard vias to Xic standard vias, and the reverse. The property is used
in Xic to identify and specify standard via instances and sub-masters. The format of the property
string is described in 5.8.1.

oa_cstmvia property, number 7161
This property is applied by the OpenAccess reader to master cells that represent a custom via. In
Xic, vias are cells, they have no unique type as in OpenAccess. The string format consists of the
cell identifier followed by parameter specifications. The cell identifier has the form

<libname> < cellname><viewname>

This is followed by a space-separated parameter specification string in the same format as the
pc_params property. A custom via master is basically a pcell sub-master.

When written back to OpenAccess, cells with this property will be ignored. A sub-master for the
custom via will be created within OpenAccess when needed.

oa_orig property, number 7183
This property is used transiently when loading OpenAccess cell data into Xic. If is applied to cells,

46 CHAPTER 2. XIC CONFIGURATION AND STARTUP

and removed when reading completes. If an instance is read before the corresponding cell definition,
a dummy Xic cell descriptor is created and given this property. The property string contains the
library and cell names, separated by a forward slash (‘/’) character. Using this information, the
cell is read later.

2.12 Python Support

This interface is presently not available under Microsoft Windows.

The Python (www.python.org) scripting language is a powerful, versatile language enjoying much
popularity. In particular, it has become the language of choice for writing portable parameterized cells,
as used in the PyCell Studio project from Ciranova, Inc. (now Synopsys). This download provides the
essentials for creating portable pcells, using the Python language, and OpenAccess. Whiteley Research
strongly favors this approach, and will integrate Ciranova standards as tightly as possible.

Python is made available, when Python-2.6 or newer is found on the user’s computer, via the Python
plug-in. Red Hat Enterprise Linux 6 and 7 provide a compatible native Python. Presently, only Python
release 2.6 is supported on Red Hat Enterprise Linux 5, so installation of an updated package is required
on that operating system.

The Ciranova PCell Studio provides Python 2.6, as well as OpenAccess. If using Ciranova, the
Ciranova-supplied Python should be used.

Red Hat Enterprise Linux 6,7
This supplies a native Python-2.6/2.7, which will work with the plug-in without any configuration.
Unfortunately, this is not compatible with the Python-2.6 provided by Ciranova. Xic can use either
one. The Python-2.6 provided by Ciranova was built with different setup flags for handling UTFS8
text than the stock Python-2.6.

Red Hat Enterprise Linux 5
The operating system provides Python-2.4, which is not supported. The Ciranova PyCell Studio
provides Python-2.6, which is one source for a compatible Python. Another is to install the
python26 extension package. Using the Package Manager or yum, install

epel-release-5-4.noarch.

This will add additional repositories. Then, in the epel repository, find and install a release like
“python26-2.6.8-2.e15.x86_64".

To use a non-default Python such as that supplied by Ciranova in the PyCell Studio, one will need to
set the LD_LIBRARY_PATH variable to include the alternative shared library location. This will happen
automatically if Ciranova’s setup procedure is followed before starting Xic (see 5.6).

Failure to load the Python plug-in is by default silent. If the environment variable XIC_PLUGIN_DBG
is set, diagnostics and error messages will be printed in the console when attempting to load plug-ins at
program startup.

When the Python plug-in is loaded, Xic is able to execute Python scripts. This includes stand-alone
scripts, and scripts that are used in parameterized cells. Note that Ciranova PyCells, which are also
Python-based, are supported via OpenAccess, and are independent of Python support in Xic. However,
future plans are to support PyCells natively in Xic. Xic is presently able to support the Ciranova
protocols for stretch handles and abutment natively.

2.12. PYTHON SUPPORT 47

This information is preliminary, and may change.

The entire library of native script functions are callable from Python. However, at this point many
of the more complicated data types found in the native function library are unsupported. There are two
ways to call a native function from Python:

xic.native_func(args, ...)
xic.eval ("native_func", args, ...)

The choice of style is up to the user, the first is probably slightly more efficient and is recommended.

The Python script must include some initialization lines in order to use the Xic interface. As a simple
example, the script below will draw two boxes in the current cell, using the current layer.

import xic

import xicerr

import sys

sys.stderr = xicerr

xic.Box(2.0, 2.0, 6.0, 7.0)
xic.eval("Box", 1.0, 1.0, 5.0, 6.0)
xic.Commit ()

The first line is mandatory for using any native script functions. It loads the Xic interface module.

The next three lines redirect Python error messages to the Xic error reporting system. These are
optional, if not included Python messages will be printed on the console window.

The final three lines call functions from the native script library. The first two of these lines illustrate
calling the Box function using the two syntax styles. The final line calls the Commit function, which
registers the change with the undo system, among other things.

The first four lines are implicitly added during pcell evaluation, thus no not have to be included in
a Python pcell script (see 5.1).

Presently, datatypes translate in the following manner. If an un-handled data type is encountered,
the script will terminate with a fatal error.

Xic type | Python type

string String.

scalar Float.

array List of float.

zlist List of “zlist” followed by lists of six integers (LL, LR, YL, UL,

UR, YU in internal units).
handle A list containing “xic_handle”, followed by the handle integer
value. For stringlist handles only, the strings follow.

When these forms are passed back to Xic functions, they are reverted to the Xic data type. Note
that handles can be passed through Python, but except for stringlist handles they are useless in Python
at present.

When the Python plug-in is loaded, the !py command is available. This command will execute a
script file containing Python commands, the path to which is given as the argument. Also, the following
script functions are available:

48 CHAPTER 2. XIC CONFIGURATION AND STARTUP

RunPython Run a Python script.
RunPythonModFunc Execute a Python module function.
ResetPython Reset the Python interpreter.

2.13 Tcl/Tk Support

This interface is presently not available under Microsoft Windows.

Xic provides a plug-in interface to Tcl/Tk. Tel (Tool control language) is a popular open source
scripting language, and Tk is a graphical package addition. The language syntax is provided in docu-
mentation supplied with Tcl/Tk, and is described in several books.

Since this capability is dynamically loaded, Xic can use this capability if it has been installed, but
does not require the installation. Support is provided for Tcl, with and without Tk.

If Tcl/Tk have been installed via a standard distribution file on the system, which is common for
Linux, the plug-in should be able to locate the shared libraries automatically. If the installation is non-
standard, the user may need to inform the system dynamic linker of the shared library location. This is
generally accomplished by setting the LD_LIBRARY_PATH variable in the environment, before running
Xic. This would normally be done in the user’s shell startup file.

There are two text-mode commands that can be used to run a Tcl/Tk script.

tcl
This command will exist only if the Tcl language support plug-in is loaded, which will occur
on program startup if the Tcl shared libraries are found. The script should contain only Tcl
commands, not Tk.

1tk
This command will exist only if the Tcl and Tk language support plug-in is loaded, which will
occur on program startup if both Tcl and Tk shared libraries are found. The script may contain
any combination of Tcl and Tk commands.

In either case, the first argument is a path to a file containing the script body. Additional arguments
are taken as arguments to the script. The script will be executed as if by the wish shell supplied with
Tecl/Tk.

The startup file, which can be used to set defaults, is named “.xic-wishrc” in the user’s home
directory. The contents is analogous to the .wishrc file normally used with Tcl/Tk. The user must
create this file if needed.

All of the Xic script functions are exported to Tecl/Tk and can be called by name from a Tecl/TIl
script. However, only the basic data types are supported. There is also a function named “xic” which
can be used in the following manner:

xic function arguments...

The function xic is a Tcl function which loads the interface function or user-defined function given
in the first argument (a string). User defined functions can be accessed if they are already known to Xic,
i.e., they were defined in a library file or were defined in a previously-run Xic script. The arguments to
the function follow, and should match the arguments expected by the function. This form must be used
when executing a user-defined function.

2.13. TCL/TK SUPPORT 49

The variable type of an argument is inferred as follows:

e A single-token numeric value without leading or trailing characters not part of the number is taken
as a scalar.

o A token of the form &arrayname() is taken as an array.

e Anything else is taken as a string.

To explicitly coerce a numeric token into a string, backslash escaped double quotes should be used
to delimit the token. For example, \"1.234\" is taken as a string. The backslash prevents tcl from
removing the double quotes before passing the token.

Arrays passed to interface functions must use “0”, “1”, etc. as indices, and are ordered accordingly
(in tcl, array indices can be any text token and have no natural order). The “0” element (at least)
must be set before the array can be passed to a function. If the array is dynamically expanded, new tcl
elements will be created. The initial size of the array is implied by the largest contiguous index assigned.
Thus, for example, if the interface function requires an array of size 4, the following tcl code could be
used

set array(0) O
set array(1) O
set array(2) O
set array(3) 0
xic Function &array()

When the function returns, the array values will be updated. Only one-dimensional arrays are
available.

There is an additional special tcl function which has been added.
xwin win-name

This function returns the X window id of the tk window given as a widget path in win_name. This is
used to obtain the window id of a tk window to be used for Xic graphics through the GRopen interface. A
suggested way to use a tk window for exported drawing from Xic is given in the example below. The xwin
procedure is used to obtain the window id. This window should be configured with ‘-background ""’
which allows redraws to be handled through a procedure bound to the window with the bind command
which responds to expose events. Otherwise, expose events will cause the window to be redrawn in gray
after the event handler is called. A pixmap is used to store the image for redraws.

Example

This is the window used for drawing by Xic.

Note the ’-background ""’ directive. This

is necessary for proper redrawing after expose
events.

frame .f -width 8c -height 8c -background ""
pack .f

set win_id [xwin .f]

50 CHAPTER 2. XIC CONFIGURATION AND STARTUP

set ghandle [xic GRopen ":0" $win_id]

The win_id is the X id of the drawing window,
the ghandle is the handle value returned from
Xic upon opening graphics on this window.

set size(0) O

set size(1) O

set size(2) O

set size(3) 0

xic GetWindowView O &size()

The size array contains the displayed area of the
cell in the main Xic window, in order L, B, R, T

xic GRdraw $ghandle $size(0) $size(1l) $size(2) $size(3)
This draws the Xic view into the Tk window

xic GRupdate $ghandle

Due to the way Tk (and X) works, unless GRupdate is

called after drawing, the drawing won’t be visible.

The operations are stuck in a cache somewhere waiting.
GRupdate flushes the operations.

set dsize(0) O

set dsize(1) O

xic GRgetDrawableSize $ghandle $win_id &dsize()

The dsize array contains the size in pixels of the
Tk drawing area.

set pixm [xic GRcreatePixmap $ghandle $dsize(0) $dsize(1)]

xic GRcopyDrawable $ghandle $pixm $win_id O O $dsize(0) $dsize(1) 0 O
xic GRupdate $ghandle

We have created a pixmap of the same size and depth as

the drawing area, and copied the drawing area into it.

This will be used to redraw the drawing area after an

expose event.

bind .f <Expose> {
This sets up a handler for expose events. Expose
events are received when a previously obscured part
of the window is uncovered. The pixmap is copied
into the Tk window.
xic GRcopyDrawable $ghandle $win_id $pixm 0 O $dsize(0) $dsize(1l) 0 O
xic GRupdate $ghandle

The TextCmd script function can be used to launch a tcl/tk script. At present, tcl/tk scripts are not
recognized in the script path, but one can use a native language wrapper to include tck/tk scripts in the
User Menu.

The following native script functions can also be used to run Tcl/Tk scripts, or perform other related
manipulations related to the Tcl/Tk interpreter.

2.13. TCL/TK SUPPORT

RunTcl Run a Tecl or Tk script.
ResetTcl Reset the Tcl/Tl interpreter.

o1

52

This page intentionally left blank.

CHAPTER 2. XIC CONFIGURATION AND STARTUP

Chapter 3

Graphical Interface, Commands and
Operations

Figure 3.1 shows a view of the Xic graphical user interface. There is generally a single large window
present when Xic first starts. The window can be repositioned, and the size of the window can be
adjusted through the window manager methods.

The column of buttons along the left is the “side menu” and is visible when the current cell is being
edited. To the right is the scrollable layer table, which displays the layers supported by the process. If
the XIC_.MENU_RIGHT variable is set in the environment when Xic starts, the layer table and side menu
will be located along the right of the window. If the XIC_HORIZ_BUTTONS environment variable is set,
the “side menu” buttons will actually be arrayed across the top of the window. The side menu is only
displayed when editing. The layer table may also be invisible, as the user has this option.

The “top menu” contains buttons and other controls and displays, located near the top of the window,
below the main menu bar. The prompt line, where the user interacts textually, is just below the main
drawing window. To the left of this is the “keys pressed” area. Below this is the status line, which
displays information about the program state.

These features will be fully described in the sections that follow.

Xic has eleven drop-down menus, arrayed in a menu bar which extends across the top of the main
application window.

53

54 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

Figure 3.1: Default Xic screen layout.

W Fle Coll Edit Modiy Yww o Attribules Coovert DRC Extract Lbser Heip

- a5 || o v [E Bl =l = o G008, 5000 G D, 5. (0

LLE 'l Sl b I B

3.1. PROMPT LINE 95

File Menu Commands to open, save, and list files and cells. This menu also
contains the printer interface.

Cell Menu Commands to access and manipulate the database of cells in mem-
ory.

Edit Menu Commands which are used to modify the current design.

Modify Menu Supplemental commands for layout modification.

View Menu Commands which affect the presentation of the current design, in-

cluding the selection of physical and electrical (schematic) modes.
Attributes Menu | Commands which affect the presentation of the design, such as the
colors used.

Convert Menu Commands for importing and exporting designs to various non-
native file formats.

DRC Menu Commands associated with design rule checking.

Extract Menu Commands associated with the extraction of electrical information
and netlists from the physical layout, and layout versus schematic
checking.

User Menu The script debugger, and the buttons that correspond to user-
generated scripts.

Help Menu Documentation and the entry into the help system.

If the mouse button is stationary over a menu button for a second or two, a “tooltip” will appear.
This is a transient window that contains a sentence describing the function of the command. This also
provides the internal name for the command. Every command has an internal name of five characters or
fewer. This name can be used as a keyboard accelerator, and as back-door input to the help system. The
help keyword for the command is “xic:” followed by the command name, for example “xic:prpty”.
Typing a question mark (‘?”) into Xic followed by the keyword will display the help text for the command.

3.1 Prompt Line

The prompt line is a single-line dialog box just below the main drawing window. Messages and prompts
are displayed in this area, as well as textual input to Xic.

The prompt line has two operating modes. In the normal mode, text is read-only. Messages appear
on the prompt line to provide information and feedback in many commands. This is “non-editing” mode.

In non-editing mode, text can be selected by dragging with button 1 held down. Selected text is
available for export to other windows, as the primary selection (see 3.13.3).

The prompt line can handle more text than is visible in the display area. If a string is longer than
the display area, initially the rightmost part of the message string will be shown. Clicking in the prompt
area with button 1 near the left border will show the start of the string. Clicking in the prompt area
near the right border will show the end of the string. Clicking in the interior of the prompt area will
show the middle part of the string, proportionate to click location.

3.1.1 Prompt Line Editing

Some commands will convert the prompt line to editing mode. In this mode, the background color
changes, and text typed by the user will appear in the prompt line window. Keys pressed when the main
window has focus are directed to the prompt line.

56 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

When editing, the behavior is slightly different depending on whether the mouse pointer is over the
prompt line area, or not. This is (or should be) true whether or not the window manager is click-to-focus
or focus-follows-mouse. When the mouse pointer is over the prompt line, which gives the prompt line
complete focus, the prompt line background color may be different from when the pointer is elsewhere.
When the pointer is elsewhere, but the main window has focus, key presses are still sent to the prompt
line, but there are a few keys, such as the arrow keys, which will operate on the drawing window rather
than the prompt line.

When prompt line editing starts, the mouse pointer is “warped” to the left edge of the prompt line,

providing full focus automatically. With the mouse pointer over the prompt line:

1. The Numeric Keypad + and Numeric Keypad - keys will send a normal + or - character and not
zoom the drawing window display.

2. The arrow keys will move the prompt line text cursor, or perform some other operation specifically
for text editing, depending on the command. These will not pan the display.

With the mouse pointer not over the prompt line, the keys mentioned will have their normal zoom
and pan functionality. In text edit mode, key bindings from the table below are available, provisionally
for the arrow keys as explained.

Prompt Line Editor Bindings

Ctrl-a Move cursor to beginning of line

Ctrl-e Move cursor to end of line

Ctrl-k Delete to end of line

Ctrl-p Paste primary selection at cursor

Ctrl-u Delete current line

Ctrl-v Paste clipboard at cursor

Left Move cursor left one character

Right Move cursor right one character

Page Down Move cursor to right by half a line, scroll if necessary
Page Up Move cursor to left by half a line, scroll if necessary
Backspace Delete previous character

Delete Delete next character

Esc Exit editing, abort operation

Enter Terminate editing

The Backspace key deletes the character or hypertext reference to the left of the cursor and moves
the cursor to the left, and Delete deletes the object at the cursor. Ctrl-u deletes the entire line. Ctrl-k
will delete the character at the cursor and all characters to the right. Ctrl-a and Ctrl-e move the cursor
to the beginning or end of the line, respectively. The line will scroll to the left or right if longer that
the available space, when the cursor hits the left and right boundaries. The Esc key exits edit mode,
discarding the input. The Enter key exits edit mode, saving the input. The cursor can be at any position
when Enter is pressed.

Double-clicking with button 1 in the prompt line area will effectively send an Enter character, ter-
minating editing. Note that a double click requires two rapid clicks, if too slow two single-click events
will occur.

Special characters can be entered using the Unicode escape Ctrl-u. The sequence starts by pressing
Ctrl-u, then entering hex digits representing the character code, and is terminated with a space character
or Enter. The Unicode coding can be obtained from tables provided on the internet, or from applications

3.1. PROMPT LINE o7

such as KCharSelect which is part of the KDE desktop. These are generally expressed as “U + xxxx”
where the xxxx is a hex number. It is the hex number that should be entered following Ctrl-u. For
example, the code for 7 (pi) is 03c0. Note that special characters can also be selected and copied, or in
some cases dragged and dropped, from another window.

There is no limit on the number of characters in the string, which can be much longer than the
display space. The Page Down and Page Up keys move the cursor to the right or left (respectively)
by half the number of characters displayable in the prompt area, and will scroll if necessary to keep the
cursor visible.

The Ctrl-p and Ctrl-v keys paste text from the primary selection and clipboard, respectively, at
the cursor. Under Windows, these actions are identical, text is obtained from the Windows clipboard.
Under Unix/Linux, clicking with button 2 will also paste the primary selection, and button 3 will also
paste the clipboard. The primary selection is generally the most recently selected text in any window,
the clipboard contains text that was explicitly saved via an operation in a text entry window.

While in editing mode, the keypress display to the left of the prompt line is replaced with two or
three buttons. The R and S buttons, which are always present when the prompt line is in editing mode,
provide access to five general-purpose registers for text, plus a register for the “last” text. Both buttons
produce a drop-down menu containing register numbers. If a selection in made in the S menu, the text
currently in the prompt area is saved to the register whose number was selected. Any previous content
is overwritten. If a selection is made in the R menu, text saved in the register whose number is selected
will replace the text in the prompt area. The saved text can contain hypertext entries (see below).

In some contexts, a third (“L”) button appears. This provides access to the “long text” capability,
which allows multiple lines of text to be entered by providing access to a text editor window.

When editing mode is exited, the buttons disappear and are replaced with the keys pressed display.
If Enter was pressed to terminate editing mode, the text is automatically saved in register 0, and will
be available from the R menu the next time editing mode is entered.

For some property strings, if a line of text that is longer than 256 characters is opened for editing on
the prompt line, the Text Editor will appear, loaded with the text. The text will be saved as a “long
text” item.

These features are described in more detail in the description of the label command in 7.9.

Non-printing characters in the text will be displayed using special symbols, which can be edited
(in edit mode) as normal characters. The non-printing character most likely to appear (and the only
one that probably should appear) corresponds to the line termination character. These cause a line
break when the text is displayed as a label on-screen, and can be entered while in editing mode with
Shift-Enter. In Windows, these are shown as a paragraph symbol, while in Unix/Linux a “v/t” (vertical
tab) glyph is used. Other characters will show as a black dot in Windows, or a “strange” character in
Unix/Linux.

The prompt line participates in the drop protocol for files. Files dropped on the prompt line in
normal mode have the same effect as files dropped in the main drawing window - the file will be taken
as layout input and displayed in the drawing window.

When in text editing mode, files dropped in a drawing window or the prompt line will not be
displayed, rather the full path to the file is inserted into the text line at the cursor. This means that
when responding to a prompt to open a file, the File Selection pop-up from the File Select button in
the File Menu can be used to find the file. The file can then be dragged into the main window or the
prompt line window and dropped, and the name will appear on the prompt line. Also while the prompt
line is in editing mode, pressing the Open (green octagon) button or the Open menu entry of the File

58 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

Selection pop-up will load the selected file path into the prompt line rather than opening the cell for
editing. In most situations where Xic prompts for a file path via the prompt line, a simplified version of
the File Selection pop-up will appear while editing is active.

3.1.2 Hypertext

Xic contains a “hypertext” capability, which is active in electrical mode. By default, the names of circuit
nodes and devices are internally assigned, implying that the name of a particular device or node name
of a particular wire net might not be well defined. This poses a problem when one wishes to identify a
specific device or wire net by name. The hypertext feature addresses this issue, as do the node name
mapping and name property assignment features.

This is necessary, for example, when setting device properties which reference other devices or nodes.
The device names and node numbers might change, thus property text could become invalid if it were
static. Instead, internally, strings are stored as data structures which reference pure text as well as
devices and nodes by internal reference. Thus, these hypertext strings are always valid.

One creates a hypertext reference by clicking on the schematic while text input is being solicited in
the prompt area. The returned data can be a node reference, a device branch reference, or a device name.
The string, as currently defined, is inserted into the displayed text in the prompt area in color. Note
that one can only delete the whole item with the Delete and Backspace keys, the hypertext references
are treated as single items.

ipi, One will encounter hypertext when using the prompt line editor as itemized below. In these
cases, one could type in the text, however if due to future modifications that text changes, the present
text would be wrong. If is therefor advantageous to use hypertext, by, e.g., clicking on a device in a
drawing window rather than typing its name.

e When creating text for properties applied to electrical devices and circuits, for referencing other
devices and nets in a name-independent manner. This applies when adding or editing properties
from the Property Editor provided by the Properties button in the Edit Menu, and when
subsequently editing the label text (and underlying property) using the label button in the side
menu.

e When creating labels that require reference to devices or nodes, such as using spicetext labels to
add such things as .measure lines.

When creating a label, clicking on a connection point in the drawing, for example, will enter a
hypertext link to the node into the label. The hypertext is shown in a different color in the prompt
line. The label will always display the correct name for the node, should the name subsequently
change. This is the means by which node labels can be added to the drawing.

e When selecting nodes and branches to plot, after simulation. The reference points selected by
clicking are all hypertext.

There are three types of reference that can be defined by clicking in a schematic.

Node Reference
If the user clicks over a wire or on a contact point of a device or subcircuit, a node reference is
established. The colored hypertext entered into the prompt line as a response is of the SPICE
form “V(name)”, where name is the node name, which is an integer by default. The string, when
printed or shown as a label, will always show the correct name for the node selected.

3.1. PROMPT LINE 99

“Hidden” target
Some devices have a “hidden” target, which is usually shown as a ‘4’ symbol as part of the
device schematic representation. The hidden targets are defined in the device definition in the
device library file, so that the meaning and location may differ. In the default device library,
most two-terminal devices have such a point, which generally returns a branch node or function
which specifies the current through the device. For Josephson junctions, the target represents the
junction phase. Clicking on this point in a drawing window will insert the corresponding reference.

Name Reference
Clicking within the bounding box of a device or subcircuit, but not over a node or hidden target,
will insert a name reference. The returned text is the name of the instance, as derived from the
name property attached to the device or subcircuit. This can be applied by the user, to give the
device a fixed name. If no name property is applied by the user, Xic will generate one with an
internally generated name.

The node references and hidden targets are also the sensitive points when using the plot and iplot
commands.

Note that these targets are active at any level of the hierarchy. However, they are generally not
selectable unless the containing subcell is shown expanded as a schematic. If a subcircuit is shown as
a symbol, one can still select internal points for hypertext references by using a proxy window. This is
described in the next section.

This feature can be used to set up specialized SPICE output. Suppose one wishes to use a .save line
in WRspice. A spicetext label can be created, where the nodes to be included in the save are inserted
in the label by clicking on the drawing. The resulting .save line will always save the clicked-on nodes,
whether or not the actual node names change.

For another example, suppose one needs to apply a functional dependence to a voltage source in the
circuit to the voltage of some node. One would accomplish this with the following procedure.

1. Open the Property Editor and use the Add menu to initiate addition of a value property.

2. In the prompt line, type the equation representing the desired functional dependence, and whenever
the node voltage text is needed, click on that node in a drawing window.

3. Press Enter to complete the operation.

The equation should appear in the property label near the voltage source. This could be, for example,
“2%v(4) + v(5)”, if default node names are used. Later, after modifying the circuit, one might notice
that the label now reads “2*xv(6) + v(8)”. The internal node numbering has changed due to the
modification, but the source still references the correct circuit nodes. This would not be the case if
ordinary text was used for the equation string.

3.1.3 Proxy Windows

If one presses the Ctrl and Shift keys while clicking with button 1 on a subcell, a sub-window will appear,
containing the content of the subcell. This works in electrical and physical mode, while the prompt line
editor is active and not.

In electrical mode, the sub-window will display the master as a schematic, whether or not it is set
to display symbolically. The sub-window, in this case has the important feature that it is a proxy for

60 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

the main window for hypertext. When using the prompt line editor, clicking in the sub-window can add
hypertext references to the prompt line, just like clicking in the main window.

One can also hold Ctrl and Shift and click on an instance in a proxy window, which will produce a
new proxy window showing the master of the clicked-on instance. One can repeat the procedure to any
depth, however at present there are only four sub-windows available, and windows will be reused if the
depth exceeds four.

When a sub-window is active as a proxy, a label is displayed in the window menu bar. This will give
the “proxy path” which consists of one or more subcircuit names, separated by periods. These are the
subcircuits clicked on, up to the top level. The sub-window otherwise behaves normally, and one can
switch to view another cell, or go to physical mode. The proxy label will disappear, and the sub-window
will no longer act as a proxy. If one returns to viewing the original cell, the label and capability will
return.

3.2 Keypress Buffer

To the left of the prompt line is the key press buffer area. This area displays the last five keys typed into
the main drawing window. The keypress buffer remembers up to 16 characters, though only the last five
are shown. It is cleared when Esc or Ctrl-u is typed. If the key sequence in the buffer uniquely prefixes a
menu command, the command name is displayed, and the command is executed. The command names
are a short mnemonic, displayed in the “tooltip” that appears when the pointer rests over a command
or menu button.

Most commands have at most five characters in their command name, the exceptions are the scripts
in the User Menu. For these, the menu text is the same as the command name, and it may take more
than five characters to uniquely define the command.

The keypress buffer can be forced to literally match menu items by typing Enter. Consider the two
entries in the User Menu: spiral and spiralform. Typing “spiral” does nothing, as this is a prefix of
both entries. In order to run spiral by typing the command prefix, type “spiral” then Enter. This works
for any menu commands where one entire command is a prefix of another.

When the prompt line is in editing mode, i.e., a command is active that requires user text input, the
keys display is replaced by buttons associated with the editing function. The key press display returns
when editing mode is exited.

Each drawing window (main window and the sub-windows produced with the Viewport button in
the View Menu) has its own keypress buffer, and matching commands will apply to the window into
which the text was typed, if applicable. In sub-windows, the key press buffer displays in the menu bar
area, to the right.

3.3 Quoting

When giving input to Xic, single and double quotes can be used to “hide” characters, such as space
characters, that Xic would otherwise interpret incorrectly. Xic will generally strip the outermost quotes
before processing, so inner-level quotes will be retained (quote marks of different types nest). A quote
mark which is preceded by a backslash will be treated as an ordinary character.

As an example, consider the prompt of the Open command. The command prompt expects one or
two tokens. The first token is the name of a file to open. The second token, if given, is the name of the

3.4. MENU SELECTION AND ACCELERATORS 61

cell to edit if the first token names a multi-cell file such as a GDSII file. Suppose that the file is in a
directory named “Xic Files”. Without the quoting mechanism, there is an obvious problem. To edit
the file, one enters, for example (each of these would work),

"Xic Files"/my_design.gds
"Xic Files/my_design.gds"
Xic" "Files/my_design.gds

The double quotes make each of these strings appear to Xic as a single word.

3.4 Menu Selection and Accelerators

Menus from the main menu bar are displayed when the left mouse button (button 1) is pressed over
a menu bar entry. The drop-down listing of entries will appear. A selection can be made by releasing
the mouse button over the item to be selected. Alternatively, clicking the mouse button will also cause
the menu to appear, and clicking over the menu will select the item under the pointer, and retire the
menu. While the menu is visible, keypresses are “grabbed” by the menu, and so will not be sent to
other windows or applications. While a menu is visible, the up and down arrow keys will cycle through
the menu entries, highlighting each in sequence. Pressing Enter will “press” the highlighted entry. The
entries in the side menu are mostly toggle buttons, which are activated by clicking with mouse button
1.

Commands can also be executed by typing an accelerator while the mouse pointer is in a drawing
window. Commands can be exited by selecting another command in most cases, or by pressing the Esc
key. Some commands are switches which remain in effect until selected again.

There are multiple accelerator functions available.

1. Alt-char brings up the menu keyed by char where char is the character that is underlined in the
name in the menubar. If this is followed by a character underlined in one of the menu entries, that
function is invoked. For example, typing Alt-fp (press and hold Alt, press f, release Alt, press p)
engages the Print command in the File Menu.

2. If the menu entry has something in the second column, that is also an accelerator. For example,
in the File Menu, the Quit entry has “Ctrl-Q” listed in the second column. This indicates that
pressing Ctrl-q will invoke the Quit command. The menu doesn’t have to be visible.

Under Unix/Linux, the menu accelerators can be changed interactively. Click on a menu to open
it, then move the pointer over one of the entries (it will be highlighted). Pressing Shift, Ctrl or
Alt along with another key will add that accelerator to the menu entry, or change an existing
accelerator. With the menu invisible, entering that key combination will “press” the assigned
button, unless the combination happens to be used elsewhere for another purpose (it must be
unique in the menus, at least). Under Windows, the menu accelerators can not be changed.

3. Every command has a name, shown in the tooltip bubble that appears after the pointer is stationary
over the button for a second or two. Typing the first few characters of this name will trigger
that command. Only the characters required to uniquely specify the command name among all
commands currently is scope are required. When activated, the name of the command is printed
in the key press buffer window. For example, “pus” triggers Push.

4. One can define macros for keypress combinations with the Define Macro command button in the
Attributes Menu.

62 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

3.5 Keyboard Input

The main window must have the keyboard focus in order for Xic to receive keyboard input. Under some
window managers, including under Windows, the frame of the main window can be clicked on to give
that window the focus, and the focus will remain with that window regardless of the location of the
pointer. In other cases, the pointer must be in the main window in order to give the main window the
focus.

If a command is active that is prompting for input, the keystrokes will appear on the prompt line,
the key press display will be replaced with buttons, and the prompt line background will appear in a
lighter color. See 3.1.1 for a description of the key bindings that are in force while in editing mode.

If not in editing mode, the characters will be added to the buffer displayed in the keys area. After
each character is added to the buffer, the buffer is compared with all menu command names, and if the
buffer uniquely matches the first characters of a menu button name, that button will be activated. Only
a few characters can be saved in the buffer, and after the buffer is full, keystrokes will be ignored. The
buffer can be cleared with Ctrl-u (hold the Ctrl key and press u). The buffer is also cleared after each
command match, although the display will show the full name of the command. The Backspace key
will delete the last character entered. There are other accelerators for most menu commands.

The ‘" character will switch the prompt line to editing mode to solicit one of the text-mode com-
mands. The ‘?” character will switch the prompt line to editing mode to obtain a help keyword or
directive. There are many other keys with special significance to Xic, summarized in the table below.
These keys should be memorized by the user, as there is no alternative way to invoke their function.

3.5. KEYBOARD INPUT 63

Character Result

! Enter text-mode command

? Enter help keyword, URL, or path to image or HTML file
Esc Exit current command, or deselect selections

Tab Undo operation

Shift-Tab Redo last undone operation

Delete Delete selected objects

Forward Slash Swap current transform with saved (Register 0) transform value.
Arrow Keys Pan

Shift-Arrow Keys | Fine pan

Ctrl-Arrow Keys | Cycle rotation and mirror transformations

Numeric + Zoom in, expand by 2

Shift-Numeric + Zoom in by 10 percent

Numeric — Zoom out, shrink by 2

Shift-Numeric — Zoom out by 10 percent

Home Center full view cell

Page Down Show next DRC error in Show Errors command
Page Up Show previous DRC error in Show Errors command
Ctrl-a Select associated labels

Ctrl-c Interrupt

Ctrl-e Enter coordinate

Ctrl-g Change grid

Ctrl-k Delete-to-end when editing

Ctrl-n Save view

Ctrl-p Deselect associated labels

Ctrl-r Redraw window

Ctrl-u Clear input buffer

Ctrl-v Print program version

Ctrl-x Expand cells

Ctrl-z Iconfiy

Just as the ‘! character switches the prompt line to editing mode to accept a command (see 19, the
“?” character will switch to editing mode, to accept a “help directive”.

A “help directive” can be one of the following;:

e A help system keyword, so “? keyword’ is the same as “'help keyword’, i.e., a shortcut to the
'help command. If no keyword is given, and the program is in a command mode, meaning that the
Mode entry in the status line is something other than “MAIN”, then the help shown will apply to
the current mode. Otherwise, the default help topic is shown, as for “!help” without arguments.

e A general URL or path to a compatible local file. The help window will display the file or URL, if
possible. In particular, image files can be displayed this way. A URL must be complete, including
the “http://” prefix. Most web sites use style sheets and other constructs not handled by the
simple rendering engine in the viewer window, so it is not great for general web-surfing, but it may
be good enough for some purposes.

e One of the single character directives. These apply only after ‘?’, and print information that is not
from the help system, but derived from internal tables. These are given in the table below.

64 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

Character \ Result ‘

',b,B Giving exactly one of these characters will print a
listing of the ‘" commands that are available in
the program.

v, V Giving exactly one of these characters will print a
listing of the variable names that have significance
within the program. Variables are listed whether
or not the variable is actually set.

s, S Giving exactly one of these characters will print a
list of variables that are currently set, the same as
the !set command without arguments.

f, F Giving exactly one of these characters will print a
list of all of the internal script interface functions
available within the program.

Each listing will provide the listed items as colored links. Clicking on the links will pop up help
about the item.

The Xic program is modular, and the Xicll and Xiv virtual programs are effectively Xic with only
a subset of modules. The listings provide definitive summaries of the functions and variables actually
available in the feature set, in case this is not clear from the documentation.

The Esc (Escape) key terminates any command and clears the key press buffer. Many commands
can also be terminated by pressing the command button a second time, or by selecting a new command.
After pressing Esc, the mode listed in the status area should be “MAIN”.

If pressed in idle mode, all selected objects will be deselected.

The Tab key performs an Undo command, which will undo the last operation, and has the same
effect as pressing the Undo button in the Modify Menu. Pressing the Shift key along with the Tab
key will instead redo the last undone operation, which is the same as pressing the Redo button in the
Modify Menu.

Pressing the Delete key will delete any objects currently selected. Objects in a drawing can be
selected with button 1 operations (see 3.6.1). This has the same effect as the Delete button in the
Modify Menu. If the Rulers button in the View Menu is active, the Delete key will delete rulers
and not other objects.

Outside of any command, pressing the forward slash ¢/’ key will swap the current transform with the
saved transform in Register 0, if any. The saved transform is the one in force for the last move or copy
operation. The current transform is also saved when terminating a Move, Copy, or Place command.

Without the Ctrl or Shift keys pressed, the arrow keys will pan the display in the drawing window
which contains the pointer by one-half screen in the direction of the arrow. If Shift (but not Ctrl)is
held while pressing the arrow keys, the display will instead pan by ten percent. Panning can also be
performed with the middle mouse button (button 2), and with the mouse wheel.

Holding Ctrl (but not Shift) while pressing the left and right arrow keys will cycle the current rotation
setting, otherwise set with the xform command in the side menu. This affects moved and copied objects
and new instances.

Holding Ctrl (but not Shift) while pressing the up arrow key will toggle the current Reflect Y state
of the Current Transform.

Holding Ctrl (but not Shift) while pressing the down arrow key will toggle the current Reflect X
state of the Current Transform.

3.5. KEYBOARD INPUT 65

Holding both Shift and Ctrl while pressing the left or right arrow keys will cycle through the previous
views in the window which has keyboard focus. This is similar to the prev and next menu commands
in the View command of the View Menu. The last five views of a cell are saved.

Holding both Shift and Ctrl while pressing the up or down arrow keys will increment or decrement
the subcell expansion depth, as if giving a ‘+’ or ‘—’ to the Expand pop-up, affecting the drawing
window that has the keyboard focus.

The arrow keys may have special functions in individual commands, which override the behavior
above. This is noted in the descriptions of the commands.

The + and — keys in the numeric keypad area will zoom the display in or out by a factor of two,
respectively, in the drawing window where the pointer was located at the time of the key press. The
action is similar to the Zoom command in the View Menu, and the button 3 operations. On some
systems, these keys must be defined using the mapping facility provided by the Key Map button in
the Attributes Menu.

If the Shift key is held while pressing the numeric keypad +/— keys, the zoomin/zoomout factor is
reduced to 10%.

Pressing the Home key will center and fully display the current cell, in the window where the pointer
was located at the time of the key press. This can also be done with the View command. On some
systems, this key must be mapped with the Key Map command in the Attributes Menu in order for
this functionality to be available.

The Page Up and Page Down keys are used with the Show Errors command in the DRC Menu.
Page Down will show the first and subsequent errors. Page Up will show the previous error(s). Pressing
Ctrl-f will have a similar effect to Page Down, and either Ctrl-b or Ctrl-p will simulate a Page Up press.
On some systems, the Page Up and Page Down keys must be mapped using the Key Map command
in the Attributes Menu.

The command line interface through the prompt area provides an interface to operating system
commands, as well as to a number of internal commands which are often rather specialized and not
associated with a menu button. Each of these commands starts with an exclamation point (‘!’), and
may be entered when no other command is active, or inside of many commands. These key presses
are not recorded in the “keys” area below the side menu. If the command entered matches one of the
internal commands, that command is executed. Otherwise, an operating system shell and associated
window is produced to execute the command, with the exclamation mark stripped. If the ‘I’ is followed
immediately by Enter, an interactive subshell window is brought up. See Chapter 19 for a listing of the
‘I’ commands.

The keyboard function keys, usually labeled F1 — F12, can be mapped by the user to provide an
alternate means of pressing buttons in the menus. The mappings are added to the technology file with
a text editor, following the syntax described in A. These mappings are completely up to the user to
define, and no default mapping is installed (though the supplied technology file contains a mapping).

There are several control characters (characters entered while holding the Ctrl key) which perform
operations in Xic. These are hard coded, and are in addition to any accelerators listed in the drop-down
menus from the main toolbar. These are also in addition to accelerators from pop-up windows that have
accelerators in their menus. These control keys supersede a menu accelerator using the same key.

Ctrl-a

In electrical mode, outside of any command, pressing Ctrl-a will cause the associated labels of
any selected device or wire to also become selected. If labels are selected, then pressing Ctrl-a

66

CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

will cause their associated device or wire to also become selected. The associated labels can be
deselected by pressing Ctrl-p. This is useful for determining which labels are associated with a
given device or wire, and vice-versa.

When entering text to the prompt area, Ctrl-a will move the cursor to the beginning of the line.

Ctrl-c

This key sends an interrupt signal to Xic. When an interrupt is received, and Xic is performing a
lengthly operation, the user is generally given the option of aborting the operation. This occurs
within the DRC and Extraction functions, and geometrical commands such as !join and !layer,
as well as file reading and writing. If an interrupt is received while drawing to the screen, the
drawing immediately terminates, without user confirmation. Script execution is also terminated
immediately.

Under Microsoft Windows, pressing the Pause/Break key also sends an interrupt signal if Xic has
the keyboard focus.

When the “wait” cursor is active when the mouse pointer is in a drawing window, Xic is “busy”.
When busy, Xic locks out all key press events except for Ctrl-c, and most mouse button events.
If a locked-out event is received, a pop-up will appear that informs the user that Xic is busy and
to use Ctrl-c to abort the operation. This pop-up will disappear after three seconds (trying to
destroy it with the mouse won’t work).

When Xic is busy and Ctrl-c is pressed, the operation may be paused, and the user is asked
(on the prompt line) whether to abort or continue. While waiting for input, most buttons are
desensitized. Those that are not are the Help Menu, View/Allocation, and Attributes/Main
Window /Freeze. Thus, these features are available during the pause.

All other events are dispatched normally while busy, so that visual updates should happen fairly
quickly. Unlike early releases, there is no attempt to save unhandled events and handle them later.

Ctrl-e

Pressing Ctrl-e prompts the user for a coordinate pair, which is then used in a point operation,
just as if the user had clicked with button 1 at that location. When entering coordinates using
Ctrl-e, the coordinate is not moved to the nearest snap point as it would have been if entered with
the mouse. Thus, off-grid points can be entered, and the user must bear this in mind.

When editing a string on the prompt line, Ctrl-e will move the cursor to the end of the string.

Ctrl-g

Pressing Ctrl-g brings up the Grid Setup panel (see 13.11.12). This can be used to alter the grid
displayed in the drawing window that had the keyboard focus. This is effectively an accelerator
for the Set Grid button in the Main Window sub-menu of the Attributes Menu, or the Set
Grid button in the Attributes menu of sub-windows (see 12.6).

Ctrl-k

When entering text to the prompt area, trl-K will delete-to-end. The character over the cursor
and all characters to the right will be deleted.

Ctrl-n

3.6. POINTING DEVICE 67

The view in a window can be saved at any time by pressing Ctrl-n. The view is assigned a letter,
which allows it to be recalled with the View command. Up to five views can be saved per window,
and these are assigned letters A-E in order. The view can also be restored by pressing Ctrl-Shift-a
through Ctrl-Shift-e.

Ctrl-p

In electrical mode, outside of any command, pressing Ctrl-a will cause the associated labels of any
selected device to also become selected. The associated labels can be deselected by pressing Ctrl-p.
This is sometimes useful for determining which labels are associated with a given device.

Pressing Ctrl-p is equivalent to pressing the Page Up key when the DRC Show Errors command
is active.

Ctrl-r

Pressing Ctrl-r will redraw the window which contained the pointer when Ctrl-r was pressed.

Ctrl-u

When entering text to the prompt area, pressing Ctrl-u will delete all characters from the input
buffer.

Ctrl-v

Pressing Ctrl-v will bring up a window containing the Xic version number and copyright informa-
tion.

Ctrl-x

Pressing Ctrl-x will bring up a the Expansion Control panel, the same as the Expand command
in the View Menu.

Ctrl-z

Pressing Ctrl-z while the pointer is in a drawing window will iconify Xic. Ctrl-z in the controlling
terminal window retains the usual job control function.

Finally, the Shift and Ctrl keys are often used in conjunction with the pointer buttons to initiate new
operations or modify current operations. The sections describing the commands will provide examples.

3.6 Pointing Device

Xic is most efficiently used with a three-button mouse, trackball, or other input device. The three
buttons are normally numbered from the left, with the mouse pointing upward. This manual will refer
to buttons by their number according to this convention.

A two-button mouse, as commonly used with PC hardware, does not provide button 2 (the “middle”
button). Although a three-button pointing device is recommended, in current Xic releases the important
button 2 operations can be simulated using button 1 or 3, while holding a modifier key. Thus, for many
users, a two-button mouse should be entirely adequate.

68 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

In short, button 1 is used for basic point and click operations and menu selections. The middle
button, button 2, is used for pan operations in drawing windows, and the right button, button 3, is used
for zooming in the drawing windows.

In addition, drawing windows respond to mouse wheel events. The basic action is vertical scrolling,
however if Shift is held, the window will scroll horizontally. If Ctrl is held (which overrides Shift) the
display will zoom in or out. The mouse wheel sensitivity can be changed with the MouseWheel variable.
A mouse wheel will also provide scrolling capability in text windows and the help viewer on most systems.

Button 1 (the left button) is used for point operations in the drawing windows, and for activating
command buttons and sliders in menus and pop-ups. In most cases, a “point operation” can be effected
in two ways: click twice, or hold and drag. If the pointer does not move too much as button 1 is pressed
and released, a single point is defined, and most commands will prompt the user to point a second time
to complete the operation. If button 1 is held while the pointer moves, upon release the operation is
completed, using the press and release coordinates. A rectangle defining the two positions is typically
ghost-drawn while the point operation is in progress.

The delay interval which is used to differentiate a “click” from a “hold” or “drag” can be adjusted
by setting the SelectTime variable with the !set command. The default value is 250 milliseconds, and
the adjustable range is 100-1000 milliseconds. Some users may find that setting the delay to a larger
value improves the ability to differentiate between the operations described below.

Outside of any command, button 1 performs selection, move/copy, and stretch operations. The Shift
and Ctrl keys act as modifiers for the button 1 presses. The following sections describe the normal
operations.

If Shift, Ctrl, and Alt are all held while button 1 is pressed, a “no-operation” (button 4) press is
simulated. This performs no action, but updates the coordinate readout window.

If Shift and Ctrl are both held while clicking on a physical cell instance or electrical subcircuit, a
sub-window will appear containing the contents of the subcell or subcircuit. In electrical mode, the new
window will display the subcell schematic, and be a proxy for the main window for hypertext, including
plot reference points. Clicking in the sub-window will assign hypertext reference points, as if one clicked
in the main window (see 3.1.3). This is how one can get hypertext references of assign plot points from
a cell that is shown as an instance symbolically.

with only the Ctrl key held, clicking on a selected cell instance will provide access to resources as
described. If the selected instance is a normal cell, the Property Editor panel (see 10.10), with the
clicked-on instance as the current object, will appear. If the selected instance master is a parameterized
cell (pcell), the Parameters panel (see 5.3) appears, allowing the user to reparameterize the instance.
If the selected instance is a standard via (see 5.8), the Standard Via Parameters panel will appear,
allowing the user to alter ther structure of the via.

3.6.1 Basic Selection Operation

If neither of the Shift and Ctrl keys is pressed, clicking on an object will toggle its selected status.
Objects which are selected are drawn with a blinking boundary. These objects are acted on by many of
the button commands, so that object selection in an important part of Xic operation. The number of
selected objects, if any, is displayed in the status area below the layer table. This information is useful,
as selected objects can be off-screen, leading to unintended consequences.

The default selection operation is described here. The selection behavior can be modified from the
Selection Control Panel brought up by the selcp button in the top button menu. Only objects on
layers that are both visible and selectable (as shown in the layer table) can be selected.

3.6. POINTING DEVICE 69

Clicking on a single object will toggle the selection status of the object. If the point where the object
was clicked is also over a subcell, the object and not the subcell will be selected or deselected; subcells
are affected only if there is no other geometry at the selection point.

It is impossible to select an object or subcell with mouse operations whose boundary is completely
invisible in all display windows. Such objects can be deselected, however.

When clicking on an intersecting point of several objects, there are two types of logic available. In
the default logic, when clicking on the intersection area of several unselected objects, only one of the
objects is selected, and repeatedly clicking in the same spot will selected a different object, deselecting
the previous selection if any. Thus, one can cycle through the candidates and select only the one of
interest. If two or more of the objects are already selected, only one of the selected objects will be
deselected, and no new object will be selected. If exactly one object is selected, it will be deselected,
and the “next” object will be selected. If there is no “next” object, then there will be no new selection.
The “next” object is subject to the ordering of layers in the layer table (top to bottom) and database
ordering (sorted descending in the Y value and ascending in the X value of the upper left corner of the
object’s bounding box).

In the “legacy” logic, which was used in releases through 2.5.63, clicking on an intersecting point
of several unselected objects will select them all. However, clicking on the intersection area of several
selected objects will not deselect them all. The logic in this case is similar to the default logic. If more
that one object is selected, only one of the objects will be deselected per click in an intersecting area.
When only one of the objects remains selected, the next click will deselect the selected object, and select
the other objects.

If the variable NoAltSelection is set, Xic will use the legacy logic.

Clicking (not dragging) on an empty part of the drawing will deselect the single object at the head
of the selection list, if any, which is the object most recently selected. This applies when no command
is active, not when selections are performed within commands.

If neither of the Shift or Ctrl keys is pressed, and button 1 is pressed, dragged, and released, the
selection status of objects that intersect the defined rectangle is toggled. This is an “area select”. Unlike
clicking (or “point select”), the selection status of all affected objects is toggled by an area select. During
the drag, the rectangle defined for the area select is ghost drawn. In area select, qualifying instances are
always selected or deselected, whether or not other geometry is present.

A special case applies in both point and area selection, when only physical cell instances are selectable,
and three or more instances would be selected. The Select Instances pop-up appears, which provides
a listing of the selectable instances, along with colored “yes/no” text indicating the present selected
state of each instance. The state can be toggled by clicking on the colored text. This is a useful feature
for designs containing a large number of overlapping cell instances. The same pop-up may appear in
other contexts when instances are being chosen for some operation. In this case, the nomenclature is
slightly different (“Choose” instead of “Select”). In both cases, the pop-up is modal, meaning that most
interface objects other than the pop-up are locked while the pop-up is visible.

In either point or area select, if the instance bounding box is not visible in the window, the instance
will not be selected, which may prevent accidents.

In electrical mode with point selection, objects are acted upon hierarchically. Wires have the highest
precedence, followed by labels, instances, and boxes. Only the clicked-on objects with the highest
precedence are acted upon, if there are multiple objects clicked on. For example, clicking on a wire over
a subcircuit will select or deselect the wire, but ignore the subcircuit. With drag selection, all qualifying
objects will be acted upon.

70 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

When the selection operation is completed, the status of the modifier keys determines how the chosen
objects are processed. If neither of Shift or Ctrl is pressed, the action is as described. if Shift is pressed
(but not Ctrl), any unselected objects are selected. If Ctrl is pressed (but not Shift) any selected objects
are deselected. If both Shift and Ctrl are held, the selection status of each object is reversed. This is
the default for area selections, but not point selections.

The desel button can be used to deselect all selected objects. This acts on all selected objects,
whether or not they are on the current layer. The !select command is another mechanism whereby
objects can be selected.

3.6.2 Basic Move/Copy Operation

Objects must first be selected in order to be moved or copied. These operations are short-cuts to the
Move and Copy commands in the Edit Menu. There are also !mo (move) and !co (copy) commands
available for text-mode input from the prompt line.

If the Shift key is down when the user presses button 1, and the pointer is over a selected object,
then a move/copy operation on all of the selected objects is initiated. Alternatively, pressing button
1 with no keys pressed over a selected object and holding, motionless for a brief period, will similarly
initiate a move/copy operation. In the first case, if the user releases button 1 immediately (clicks)
then the outlines of the selected objects are “attached” to the pointer and the move/copy operation
will complete when the user clicks a second time. Alternatively, the user can drag the pointer (with
button 1 still pressed), and the release event will complete the operation. In the second case, the pointer
must remain motionless with button 1 down for a brief period. The user can release button 1, at which
point the objects are attached to the pointer, and complete the operation with a second button 1 press.
Alternatively, the user can begin to drag, and complete the operation by releasing button 1. The brief
period of inactivity, or the fact that the Shift key is pressed, signals the start of a move/copy operation.

Pressing the SpaceBar toggles whether the operation is in move or copy mode. The last state is
remembered in the next operation. A message in the prompt area indicates the current mode, which
will apply when the operation completes.

When in copy mode, a replication count will be read from the keypress buffer of the current window
when the copy is performed. This is an integer, entered by typing into the window. If not found or out
of the range 1-100000, a single copy is made. Otherwise, multiple copies will be created, at multiples of
the translation distance.

Also in copy mode, when clicking twice rather than dragging, the object being copied remains “at-
tached” to the mouse pointer, so that additional copies can be placed by simply clicking. Pressing Esc
will terminate this mode.

If the Shift key is down when the operation is completed, the angle of translation is constrained to
be multiples of 45 degrees. This constraint is visible during the move/copy by observing the behavior
or the ghost-drawn outlines as the pointer moves. This is often useful for making sure that the new
location is horizontally, vertically, or diagonally aligned with the original location.

If the Enter is pressed during a move, when the objects being moved are ghost-drawn and attached
to the pointer, the reference point of the object becomes the lower left corner of the bounding box of
the objects. Pressing Enter will cycle the reference point through the corners of the bounding box, and
back to the original reference location. Note that this allows objects that have somehow gotten off-grid
to be returned to the grid.

Tt is possible to change the layer of objects during a move/copy operation. During the time that
objects are ghost drawn and attached to the mouse pointer, if the current layer is changed, the objects

3.6. POINTING DEVICE 71

that are attached can be placed on the new layer. Subcells are not affected.

How this is applied depends on the setting of the LayerChangeMode variable, or equivalently the
settings of the Layer Change Mode pop-up from the Set Layer Chg Mode button in the Modify
Menu. The possible actions are to ignore the layer change, place objects originating from the old current
layer on the new layer, or to place all new objects on the new layer. If the current layer is set back to the
previous layer before clicking to locate the new objects, no layers will change. Note that layer change is
only possible for “click-click” mode and not “press-drag”.

3.6.3 Basic Stretch Operation

Objects must first be selected in order to be stretched. The basic stretch operation described here is
also available from the Stretch command in the Edit Menu, but that command provides additional
features, such as vertex selection, not available from the basic operation. Stretching operations are also
available for polygons in the polyg command, and for wires in the wire command.

Clicking on a selected object with the Ctrl key pressed initiates a stretch. If the Shift key is also held,
an actual stretch command is initialted, as if the Stretch button in the Modify menu was pressed.
The mode changes to the stretch command, which can be terminated by pressing the Esc key. The
command allows use of vertex selection to mark and move several polygon vertices in tandem, a feature
not available in the simple stretch operation to be described, which in initiated if the Shift key is not
also pressed.

Any object other than subcells can be stretched, but the effect of the stretch differs on the various
objects. Boxes and labels are stretched in such a way as to maintain a rectangular shape. That is, if a
corner is stretched, the adjacent vertices are also moved in order to keep the internal angles 90 degrees.

The stretch operation works differently on Manhattan polygons than polygons containing nonorthog-
onal angles. For non-Manhattan polygons, a single vertex is moved, all others remain fixed. The stretch
operation on Manhattan polygons is similar to the operation as applied to boxes, i.e., the corner and
adjacent vertices are changed so as to keep the polygon Manhattan. A single vertex can be stretched
arbitrarily either by selecting the vertex in the Stretch command in the Edit Menu, or by using the
vertex editor in the polyg command.

If the Ctrl key is pressed when the user presses button 1, and the pointer is over a selected object
that is not a subcell, a stretch operation will be initiated. The operation is performed on all selected
objects, and the new outlines are ghost drawn. As for move/copy, the operation can be performed by
clicking twice, or by dragging and releasing button 1. For selected polygons and wires, the vertex nearest
the button 1 press location, for each object, is moved. For boxes and labels, the corner closest to the
button down location is moved.

If the Shift key is pressed when the stretch is completed, the angle of translation is constrained to
multiples of 45 degrees. This can be seen in the behavior of the ghost drawn outlines while the pointer
moves, with and without the Shift key pressed. At this stage, the Ctrl key is ignored.

3.6.4 Additional Notes

Pressing the Esc key will terminate the operations described above while in progress. The Tab and
Shift-Tab keys will undo and redo the operation, respectively. These operations sound complex when
described in print, but become quite natural in practice. The user should spend a few minutes learning
these operations.

72 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

In the layer menu, button 1 selects the current layer, as indicated by the highlight box drawn around
the entry. If the Shift or Ctrl key is pressed while clicking with button 1 in the layer menu, the action
is identical to a button 2 press, i.e., the layer visibility status is changed. This is advantageous for users
with a two-button pointing device, on which button 2 is usually absent.

Many of the pop-up windows can be moved by pressing button 1 while the pointer in on the back-
ground or a label object in the pop-up. While button 1 is held, the outline of the pop-up is ghost-drawn
and attached to the pointer. The pop-up is moved to the new location when button 1 is released.

3.6.5 Button 2 Operations

Button 2 a is usually the center button on a three-button pointing device. On two-button mice, the
right button is typically button 3, and button 2 is missing. On some systems, pressing buttons 1 and
3 simultaneously will simulate a button 2 press. Xic provides alternative ways to perform the button 2
operations, so that a two-button pointing device can be used, but is a tiny bit less efficient.

If button 2 is clicked in a drawing window, the window is redrawn with the click location centered
in the window. If instead button 2 is pressed and the pointer moved to a new location before release,
the window is redrawn with the press location moved to the release location. If there are multiple
windows open, only the window under the release will be redrawn. Thus, for example to change the
view in a sub-window, press and hold button 2 while pointing at the desired feature in the main (or
another) window, then release button 2 while pointing in the sub-window. The sub-window will show
the pointed-to objects at the release location.

The same action will be initiated if button 3 is pressed while either the Shift or Ctrl key is held
down. The key state when button 3 is released does not matter.

In the layer menu, button 2 will switch the visibility of layers, as indicated by the sample box.
Clicking button 2 on the individual layers toggles their visibility. Clicking button 2 on the small box
icon at the far right of the layer menu will toggle visibility of all layers. All layers will be set to visible
or invisible according to whether a majority of layers were originally invisible or visible, respectively.

The behavior is a little different between physical and electrical modes. In physical mode, the screen
will not be redrawn automatically, unless the Shift key is held during the button 2 press, but can
be redrawn by clicking button 2 in the center of the drawing window, or by pressing the Ctrl-r key
combination.

In electrical mode, the screen is automatically redrawn. The SCED (drawing) layer is always visible.
Instead of the visibility of this layer being toggled, the fill setting is toggled between solid and empty
fill.

The same behavior is obtained by holding Shift or Ctrl while clicking with button 1 in the layer
menu. If Shift is held, the screen will be redrawn automatically while in physical mode.

3.6.6 Button 3 Operations

Button 3 performs a zoom operation. Draagging or clicking twice defines diagonal corners of a rectangle
to zoom into. The window will then display the contents of this area (after compensating for aspect
ratio).

If the same operation is done, but Ctrl or Shift is pressed during the drag button-up or the second
mouse click, operation is different. In this case, the area is marked by a dotted highlighting box, and a
subsequent button 3 press will complete the operation. A press in the same window will cause the area

3.7 THE WR BUTTON: EMAIL CLIENT 73

defined by the first and second points to be shrunk by the ratio of the diagonals of the rectangles defined
by point 1, point 2 and point 1, point 3. To zoom in a lot, point 2 is much closer to point 1 than point
3 is to point 1. Alternatively, a button 3 press in a different window will display the boxed area of the
first window in the second window.

If Shift or Ctrl is held down before the initial button 3 press in a drawing window, a pan operation
will be initiated instead of the zoom, the same as if button 2 was pressed.

In the layer menu, button 3 enables layer blinking, if neither of Shift or Ctrl is pressed. Pressing
and holding button 3 over a layer entry in the layer table will cause that layer to blink periodically in
the drawing windows, while button 3 remains pressed. Layers that happen to have the same color as
the selected blinking layer will also blink, since the operation is sensitive only to the layer color.

In combination with Shift and Ctrl, clicking with button 3 on a layer entry provides a shortcut:

e Ctrl-button 3 will set the current layer to the clicked-on layer, and bring up the Color Selection
panel, loaded with that layer’s color.

e Shift-button 3 will set the current layer to the clicked-on layer, and bring up the Fill Pattern
Editor loaded with that layers pattern.

e Ctrl-Shift-button 3 will set the current layer to the clicked-on layer, and bring up the Tech
Parameter Editor targeted to the layer.

3.6.7 Button 4

Support is provided for a fourth button for those pointing devices which have four buttons. Pressing
button 4 does nothing except update the coordinates displayed on-screen. No action is performed. This
can be simulated by holding the Ctrl, Shift, and Alt keys while pressing button 1.

3.6.8 Mouse Wheel

The GTK user interface provides support for mouse wheels. Any window that has scroll bars can be
scrolled by moving the pointer over a scroll bar and turning the mouse wheel. The drawing windows,
most text windows and help viewer windows respond to the mouse wheel by scrolling when the pointer
is in the window, as well as over a scroll bar (if any). In drawing windows, scrolling will be horizontal
if Shift is held, and if Ctrl is held (which overrides Shift), the display will zoom in or out instead. The
mouse wheel sensitivity can be changed with the MouseWheel variable.

3.7 The WR Button: Email Client

Keyword: mail i i i

The WR button is located in the upper left corner of the Xic main window. Pressing this button
brings up a mail client window. The mail client can be used to send mail to any email address, though
when the panel appears, it is pre-loaded with the address of Whiteley Research technical support. The
text field containing the address, as well as the subject, can be changed.

74 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

The mail client can be used to send mail to arbitrary mail addresses, though when the panel appears,
it is pre-loaded with the address of Whiteley Research technical support. The text field containing the
address, as well as the subject, can be changed.

The main text window is a text editor with operations similar to the text editor used elsewhere in Xic
and WRspice. The File menu contains commands to read another text file into the editor at the location
of the cursor (Read), save the text to a file (Save As) and send the text to a printer (Print). When
done, the Send Mail command in the File menu is invoked to actually send the message. Alternatively,
one can quit the mail client without sending mail by pressing Quit.

The Edit menu contains commands to cut, copy, and paste text.

The Options menu contains a Search command to find a text string in the text. The Attach
command is used to add a mime attachment to the message. Pressing this button will cause prompting
for the name of a file to attach. While the prompt pop-up is visible, dragging a file into the mail client
will load that file name into the pop-up. This is also true of the Read command. Attachments are shown
as icons arrayed along the tool bar of the mail client. Pressing the mouse button over an attachment
icon will allow the attachment to be removed.

In the Windows version, since Windows does not provide a reliable interface for internet mail, the
mail client and crash-dump report may not work. Mail is sent by passing the message to a Windows
interface called “MAPI”, which in turn relies on another installed program to actually send the mail.
In the past, the mail system was known to work if Outlook Express was installed and configured as the
”Simple MAPI mail client”. It is unknown whether this is still an option with recent Windows releases.

To get mail working in Windows 8, it was necessary to download and install something called “live
mail” from Microsoft, which eventually worked. This application supports MAPI, apparently the default
Windows 8 Mail application does not. The default Windows 8 Mail application also does not work with
POP3 servers.

3.8 Top Button Menu

The top button menu extends along the top of the Xic main window, just below the main menu bar.
This contains a number of buttons and other controls. In left-to-right order, these are described briefly
below, and in more detail in the sections that follow.

The lsearch button and entry: find layer and set current
The text entry displays the name of the current layer. This entry area and the adjacent button
with the blue triangle icon can perform a layer search by (partial) name. Matching layers become
the current layer.

The 1tvis button: show/hide layer table
This button toggles visibility of the layer table.

The Ipal button: show/hide layer palette
This button controls visibility of the layer palette.

The setcl button: set current layer form clicked-on object
Pressing this button, then clicking on an object in a drawing window will set the current layer to
the layer of the object.

The selep button: show/hide selection control panel
This button controls the visibility of the Selection Control panel.

3.8. TOP BUTTON MENU (0]

The desel button: deselect all objects
Pressing this button will deselect all currently selected objects.

The rdraw button: redraw windows
Pressing this button will redraw the main window, and all sub-windows showing the same display
mode (electrical or physical) as the main window.

The coordinates readout
This window displays the coordinates of the mouse pointer.

3.8.1 The Isrch Button and Entry: Find Layer and Set Current

Keyword: 1lsrch

Just above the layer table, at the far left of the top button menu, is a text entry area, with a button
containing a blue triangle icon to the left. The name of the current layer is displayed in this area. This
can be used to find layers by name. One can enter the first few characters of a layer name into the text
area, then press the button to the left. The button icon will change to two triangles, and the layer table
will scroll to the first matching layer found (if any), as the current layer. Clicking the button a second
and subsequent time will scroll to the next and later matches. Though the text in the entry area will
take on the selected layer name, the search string is retained internally as long as the two-triangle icon is
displayed on the button. This will revert to the single triangle after a few seconds if not clicked. When
using the layer: purpose form, both the layer and purpose strings are handled independently, and both
can contain just the first few characters of the actual layer and purpose names.

3.8.2 The ltvis Button: Show/Hide Layer Table

Keyword: 1tvis =

The 1tvis button in the top button menu toggles display of the layer table. As the layer table occupies
significant screen area, it is sometimes useful to get rid of it to enable a larger main drawing window.

Much of the functionality of the layer table is found in the layer palette which in some ways is like
a “mini layer table” containing only a few chosen layers. Even without the palette, one can switch the
current layer using the layer search capability, or the setcl button, both found in the top button menu.

3.8.3 The lpal Button: Show/Hide Layer Palette

Keyword: 1pal """

The Ipal button in the top button menu will bring up the layer palette. The layer palette is an
adjunct to the layer table which provides a means for quick access to a few “important” layers, and
prints information about layers. This is particularly useful when working with technologies containing
a large number of layers, to avoid hunting through the layer table. When the mouse pointer hovers over
a layer indicator in the layer table or in the palette, information about that layer is printed in the top
part of the palette.

The layer palette consists of three logical sections. The top section is a text area that displays infor-
mation about the layer currently or was last under the mouse pointer. The user can move the pointer

76 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

over the layer icons in the layer table or the palette, and the palette will display the information. The in-
formation printed includes the alias and description of the layer, and the GDSII mapping layer/datatype
numbers.

In the lower section, there are four rows of locations for layer indicators. The indicators in this section
can be dragged and clicked on in the same manner and same functionality as layers in the layer table.
The top row contains layer indicators for the last five choices of current layer. This row is automatically
updated whenever the user selects a current layer by any means.

The three rows below can be filled by the user, by dragging/dropping layers from the layer table, or
from the top row in the palette. Layers in these rows can be dragged/dropped within the rows to change
the listing order. A layer indicator can be removed from these rows by pressing the Remove button at
the top of the panel, then clicking on a layer indicator in this area. The indicator will disappear, and
the Remove button will become unselected.

In order to conserve space, only the index number of the layer in the layer table is shown with
the layer sample box in the layer palette. The layer’s name and other information can be obtained by
hovering over the indicator with the mouse pointer.

The palette layers can be saved in one of seven registers and restored later, with the Save and
Restore buttons. There are separate registers for physical and electrical modes, so that the same
register number can be used in each mode. The current palette is saved when the palette is dismissed,
and restored when the palette is popped up again.

These registers are saved in a technology file created with the Save Tech button in the Attributes
Menu. The corresponding technology file keywords are PhysLayerPalettel — PhysLayerPalette7 and
EleclLayerPalettel — ElecLayerPalette7. Each keyword can be set to a space-separated list of layer
names, representing the content and order of the layers in the register.

3.8.4 The setcl Button: Set Current Layer from Clicked-On Object

Keyword: setcl [=]

The setcl button in the top button menu allows setting the current layer by clicking on objects in
a drawing window. The user must first press the setcl button, then click on an object in a drawing
window. The current layer will be reset to the layer of that object. Without changing the mouse pointer
location, clicking will cycle through other layers of objects that were under the original click location.
Additional clicks must come within a short period of time, or the command will exit first.

3.8.5 The selcp Button: Show/Hide Selection Control Panel

Keyword: selcp

The selcp button in the top button menu displays the Selection Control Panel which provides a
number of mode switches which control object selection.

There are three “radio button” groups. The Pointer Mode group sets the mode for selections
initiated with button 1 while outside of commands. There are three choices:

Normal
Standard select/modify behavior.

3.8. TOP BUTTON MENU 7

Select
Allow selections only.

Modify
Allow move/copy /stretch on selected objects only.

The Area Mode group provides three modes for area (drag-over) selections.

Normal
Standard area selection behavior, objects are chosen if the object touches but does not completely
cover the selection area.

Enclosed
Chosen objects must exist completely within the selection area.

All
Any object that touches the selection box is chosen.

The Selections group modifies how chosen objects are processed.

Normal
Standard behavior.

Toggle
Reverse the selected/deselected status of all chosen objects.

Add
Select all unselected objects chosen.

Remove
Deselect all selected objects chosen.

While selecting, and the Selections group is Normal, during completion of the selection operation,
the modifier keys are recognized:

Shift
Select all unselected objects chosen.

Ctrl
Deselect all selected objects chosen.

Shift-Ctrl
Reverse the selected/deselected status of all objects chosen.

Thus, the Toggle/Add/Remove modes can be established transiently with the modifier keys. For area
selection, the normal operation is to toggle the selections. For a point select (mouse click), if more than
one underlying object is selected, one of the selected objects is deselected, and there is no new selection.

The Objects group specifies the type of objects that can be selected and deselected with mouse
operations. The buttons are labeled Cells, Boxes, Polys, Wires, and Labels. These buttons control
whether or not the indicated type of object can be selected or deselected with the mouse. This is useful,

78 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

for example, when one needs to select cells that are covered by geometric objects, since the geometric
objects will always be selected with a mouse click, and not the cells.

Normally, when scanning through the database for objects that are within the selection area, layers
are searched from logical top to bottom. The logical top layer is the last layer listed in the layer table
(i.e., at the bottom). Thus, in some modes objects on upper layers will be selected preferentially over
objects on lower layers. If the Search Up button is active, this ordering is reversed, layers are searched
from logical bottom to top, or top to bottom as listed in the layer table.

In the extraction system, the search order will affect the default association of terminals to layers.
It also applies to the operations in the Path Selection Control panel.

3.8.6 The desel button: Deselect Objects

Keyword: desel a:o

Pressing the desel button will deselect all of the currently selected objects. Individual or groups of
objects can be deselected by selecting them a second time with the mouse. When not in a command
mode, pressing the Esc key will also deselect all selected objects.

3.8.7 The rdraw button: Redraw Windows

Keyword: rdraw |

Pressing this button will redraw the main window, and any sub-windows that are showing the same
display mode (electrical or physical). The drawing window with keyboard focus can also be redrawn by
typing Ctrl-r. Clicking with button 2 near the center of the window is yet another way to force a redraw.
After most operations, the windows are automatically redrawn, so forcing a redraw is not often needed.
Exceptions are when changing layer colors and fill patterns.

3.8.8 Coordinates Display

Just above the Xic main drawing window is an area where pointer coordinates are printed. The coor-
dinates are given in microns, relative to the internal coordinate system. In physical mode, the origin is
indicated on-screen. The first row in the coordinate display is the current location of the pointer. The
second row is the location of the last button press event. The third row is the delta between the current
position and the last button press event.

3.9 Main Drawing Window

The main drawing window occupies the largest section of the visible user interface. This is the primary
presentation and work area for editing. The main drawing window supports drag and drop as a drop
receiver for files.

Drawing windows respond to a number of button operations and key presses to pan and zoom. See
the sections on button and key operations for a complete description. In addition, drawing windows
respond to mouse wheel events. The basic action is vertical scrolling, however if Shift is held, the window
will scroll horizontally. If Ctrl is held (which overrides Shift) the display will zoom in or out. The mouse
wheel sensitivity can be changed with the MouseWheel variable.

3.10. XIC LAYERS 79

Xic supports standard drag and drop protocols. One is able to drag files from many file manager
programs into the main window of Xic, and that file will be loaded into Xic. The File Selection panel
from the File Select button in the File Menu, and the Files Listing pop-up from the Files List
button in the File Menu, participate in the protocols as sources and receivers. The text editor and
mail client pop-ups, among others, are drop receivers. While in text editing mode, the prompt line is
a drop receiver, and drops in the main window are redirected to the prompt line when editing mode is
active. Most of the pop-ups in Xic which solicit a text string are also drop receivers.

The file must be a standard file on the same machine. If it is from a tar file, or on a different machine,
first drag it to the desktop or to a directory, then into Xic. The GNOME gmc file manager allows one to
view the contents of tar files, etc. as a “virtual file system”. Window Maker and Enlightenment window
managers, at least, are drag/drop aware.

Most of the listing pop-ups in Xic are drag sources, i.e., one can drag the name from the listing and
drop it in a drawing window.

When a window is displaying cells from a Cell Hierarchy Digest (CHD), meaning that the Display
button in the Cell Hierarchy Digests panel is engaged, the dropped cell name must match a cell name
in the CHD. If not, an error message will appear. Otherwise, the display will switch to the dropped
cell as the root. Changing the display root does not change the default cell of the CHD. In this mode,
nothing new is brought into program memory.

In normal display mode, the window will open the cell or file dropped. The dropped object can be
of various types, depending on the source: file names, cell names from memory, cell names from a CHD,
and library references are all possible. If the dropped object does not suggest an unambiguous cell, a
pop-up will appear requesting that the user make a selection from a given listing. This may happen,
for example, when a dropped file name contains more than one top-level cell, or the dropped name is a
library containing multiple references.

A dropped file name will cause the file to be read into memory, and the top-level cell will be displayed.
A cell name from a CHD will cause the cell and its hierarchy to be extracted from the CHD’s source
and loaded into memory, and the given cell will be displayed. Library references that point to a cell
will likewise be brought into memory, and the referenced cell will be displayed. A cell name will simply
display that cell, which if not already in memory, will be opened through the library and search path
mechanism, or created internally as an empty cell if unresolved.

If dropped into the main drawing window, the displayed cell becomes the current cell for editing and
selections. If dropped in a sub-window, the cell will be displayed, but can not be edited if it is different
from the current cell (the cell shown in the main drawing window).

3.10 Xic Layers

In Xic, boxes, polygons, and other objects are created on layers. These often correspond to mask levels
in a fabrication process, but the actual interpretation is up to the user.

Most often, layers are defined in the technology file, and these are shown within Xic in the layer
table. One of the layers is selected as the “current layer”, which is used for drawing objects.

Layers have an order, as shown in the layer table display. Layers that come later in the listing are
considered to be “above” the layers listed earlier. This is reflected in how layouts are drawn on-screen
and in plots, as the fill (if any) of a layer will obscure the lower layers.

Historically, Xic has used a very simple model for layers based on CIF. In this model, each layer has

80 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

a unique name of four characters or fewer.

Starting with the Xic-3.3 branch, the OpenAccess model is used. This provides fundamental com-
patibility with design tools based on the OpenAccess database, including Cadence Virtuoso. However,
it is a bit more complicated.

The word “layer” now has two meanings. This is unfortunate, but the meaning should be clear in
context. First, there are the Xic layers we have mentioned. Second, there is the concept of a component
(or OpenAccess) layer. In OpenAccess, layer names are associated with layer numbers, forming an
abstraction that can be identified by name or number. OpenAccess also similarly defines another abstract
type called the “purpose”. Again, there are purpose names and purpose numbers, and an abstraction
identifiable by name or number. In order to draw an object in OpenAccess, one requires a layer and a
purpose. A layer and a purpose in OpenAccess is called a layer /purpose pair (LPP). An LPP is actually
what corresponds to an Xic layer.

In Xic, there is a default purpose, with name “drawing”. When a purpose name is not explicitly
specified, this purpose will be assumed.

Every Xic layer has a component layer name and purpose. The name of an Xic layer is given or
printed in the form

component_layer|: purpose]

If the purpose name is “drawing”, then it is not printed or given explicitly. Otherwise, the purpose
is separated from the component layer name by a colon (’:’) character. Note that when the purpose
is “drawing”, the Xic layer name is simply the component layer name, so if the only purpose used is
“drawing”, the distinction between OpenAccess and Xic layer names vanishes.

Example Xic layer names:

ml
ml:pin

The first name corresponds to component layer name m1 and purpose drawing. The second example
uses a purpose named “pin”.

In Xic, layer names of both types, and purpose names, are always recognized and treated without
case-sensitivity. There is no limit on the length of these names. Component layer and purpose names
can contain alphanumeric characters plus dollar sign (’$’) and underscore ().

All of the component layer and purpose names also have corresponding numbers. These may be
assigned by the user, or assigned internally by Xic. Xic will maintain the associations, but the numbers
are not used by Xic. They are, however, important for compatibility with other tools.

All Xic layers may be given an alias name. The layer will be recognized by this name, as well as its
normal name. Xic layers may also contain a description string, presentation attributes such as color and
fill pattern, and a host of other flags and properties for use within Xic.

3.11 Layer Table

The layer table is arrayed vertically to the left of the main drawing window. If layers have been specified
to Xic, they will be shown in this area. If there are more layers than space available for display, a scroll

3.11. LAYER TABLE 81

bar is provided. There is no limit on the number of layers that can be defined in Xic. Separate layer
tables are provided for electrical and physical modes.

The “grip” that separates the layer table from the main drawing window can be dragged to change
the layer table width.

To the left of each entry sample box are indicators that when clicked on will toggle either the visibility
or selectability of that layer. If the layer is not visible, objects on that layer will not be shown in layout
images. It the layer is not selectable, objects on the layer can’t be selected.

To the right of the sample box are the layer name and purpose names.

(A3}

When the layer is not visible, the sample box is not drawn, and the green “v” indicator becomes a
red “nv”. Layers with the Invisible technology file keyword will by default be invisible. If the layer
is not selectable, the layer name / purpose name area is shown with a dark background, and the green
“s” indicator becomes a red “ns”. Layers with the NoSelect technology file keyword will by default be
non-selectable.

Visibility can be toggled by clicking on the v/nv indicator with button 1, or by clicking in the sample
box area with button 2, or by clicking anywhere in the entry with button 1 and the Shift key held.

In releases earlier than 4.1.6, a layer visibility change would not automatically redraw the screen in
physical mode. This is ancient behavior intended to accommodate slow screen redraws. When several
layer visibility changes are to be made, one can make the changes and then force a screen redraw.
This seems to be unnecessary on newer computers, which render very quickly, so the updating is now
automatic. There is a variable, NoPhysRedraw, that if set will revert to the original behavior of no
automatic redraw in physical mode, if the user prefers this.

Pressing Shift along with clicking button 2 in the sample box area will suppress redraw if the variable
is not set. If the variable is set, then the Shift-click will redraw tha main window and all similar sub-
windows after the operation. The drawing window that has the keyboard focus can be redrawn by
pressing Ctrl-r. The rdraw button to the left of the coordinate readout will redraw the main window
and all similar sub-windows.

In electrical mode, the SCED layer, which is the electrical mode active wiring layer, is always visible.
Instead, of toggling visibility of this layer, the button presses will toggle between solid and empty fill.

Selectability can be toggled by clicking on the s/ns indicator with button 1, or by clicking in the
layer name/purpose name area with button 2, or by clicking anywhere on the entry with button 1 and
the Ctrl key held.

One can also toggle the visibility and selectability states of all layers except for the current layer. At
the bottom of the layer table, there are two gray areas labeled “vis” and “sel”.

Clicking the “vis” area with button 1 or button 2 will switch all layers except for the current layer to
invisible, and back. The comment above regarding window redraw in physical mode applies here as well.
If Shift is held while clicking, the current redrawing behavior is reversed. When switching back to “all
layers visible”, layers with the Invisible keyword applied in the technology file will remain invisible.

Similarly, clicking the “sel” area will switch all layers except for the current layer to non-selectable
and back. When switching back to “all layers selectable”, layers with the NoSelect keyword applied in
the technology file will remain non-selectable.

Button 3 enables layer blinking, if neither of Shift or Ctrl is pressed. Pressing and holding button 3
over a layer entry in the layer table will cause that layer to blink periodically in the drawing windows,
while button 3 remains pressed. Layers that happen to have the same color as the selected blinking layer
will also blink, since the operation is sensitive only to the layer color.

82 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

In combination with Shift and Ctrl, clicking with button 3 on a layer entry provides a shortcut:

e Ctrl-button 3 will set the current layer to the clicked-on layer, and bring up the Color Selection
panel, loaded with that layer’s color.

e Shift-button 3 will set the current layer to the clicked-on layer, and bring up the Fill Pattern
Editor loaded with that layers pattern.

e Ctrl-Shift-button 3 will set the current layer to the clicked-on layer, and bring up the Tech
Parameter Editor targeted to the layer.

The current layer is shown with a blue highlighting box. Clicking on a layer entry with button 1 will
make it the current layer. The current layer is used when creating objects in the layout.

One can also search for a layer to set as the current layer by name. Just above the layer table is a
text entry area, with a button containing a blue triangle icon to the left. The name of the current layer
is displayed in this area. This can be used to find layers by name. One can enter the first few characters
of a layer name into the text area, then press the button to the left. The button icon will change to two
triangles, and the layer table will scroll to the first matching layer found (if any), as the current layer.
Clicking the button a second and subsequent time will scroll to the next and later matches. Though
the text in the entry area will take on the selected layer name, the search string is retained internally
as long as the two-triangle icon is displayed on the button. This will revert to the single triangle after
a few seconds if not clicked. When using the layer: purpose form, both the layer and purpose strings
are handled independently, and both can contain just the first few characters of the actual layer and
purpose names.

The current layer can also be set with the setcl button in the top button menu. If one presses this
button, then clicks on an object in a drawing window (the object must be contained in the current
cell), the current layer will be changed to the object’s layer. All of the rules for selections apply when
interpreting which object will specify the layer, and in particular the object must be selectable.

The Itvis button in the top button menu will toggle the visibility of the layer table. The layer table
takes a lot of screen area, and often it is not needed. The layer palette can be used instead to provide
access to a few chosen layers.

3.12 Status Display

The status area is located below the prompt line. This area provides information about current program
modes. It displays the technology name from the technology file, if any, the current cell name, the grid
spacing, the snap number if not 1, the number of objects selected if any, and the level of subedit in a
Push, if in a subedit. Also displayed is a mode keyword, or “MAIN”, and a code representing the current
transform if set. If the current cell has been modified and not saved to disk, “Mod” will appear in the
status area in colored text. If the current cell has the IMMUTABLE flag set, “R0” (for “read only”) will
appear. If the physical grid origin is not 0,0 (set with the PhysGridOrigin variable), “PhGrid0ffs” will
be displayed in colored text.

Dragging over text in the status display with button 1 held down will select the text. Clicking on a
word with button 1 will select the word. Selected text is available for export to other windows, as the
primary selection in Unix/Linux, or from the clipboard in Windows. Under Windows, the selection is
copied to the Windows clipboard automatically.

3.13. TEXT ENTRY WINDOWS 83

3.13 Text Entry Windows

The GTK interface provides single and multi-line text entry windows for use in the graphical interface.
These entry areas use a common set of key bindings (see 3.13.4) and respond to and use the system
clipboard (see 3.13.3) and other selection mechanisms in the same way.

3.13.1 Single-Line Text Entry

In many operations, text is entered by the user into single-line text-entry areas that appear in pop-up
windows. These entry areas provide a number of editing and interprocess communication features which
are described with the key bindings (see 3.13.4) and system clipboard (see 3.13.3).

In both Unix/Linux and Windows, the single-line entry is typically also a receiver of drop events,
meaning that text can be dragged form a drag source, such as the File Manager, and dropped in the
entry area by releasing button 1. The dragged text will be inserted into the text in the entry area, either
at the cursor or at the drop location, depending on the implementation.

3.13.2 The Text Editor

The graphical interface provides a general-purpose text editor window. It is used for editing text files or
blocks, and may be invoked in read-only mode for use as a file viewer. In that mode, commands which
modify the text are not available.

This is not the world’s greatest text editor, but it works fine for quick changes and as a file viewer.
For industrial-strength editing, a favorite stand-alone text editor is probably a better choice.

The following commands are found in the File menu of the editor. Not all of these commands may
be available, for example the Open button is absent when editing text blocks.

Open
Bring up the File Selection panel. This may be used to select a file to load into the editor. This
is the same file manager available from the File Select button in the Xic File Menu.

Load
Bring up a dialog which solicits the name of a file to edit. If the current document is modified and
not saved, a warning will be issued, and the file will not be loaded. Pressing Load a second time
will load the new file, discarding the current document.

Read
Bring up a dialog which solicits the name of a file whose text is to be inserted into the document
at the cursor position.

Save
Save the document to disk, or back to the application if editing a text block under the control of
some command.

Save As
Pop up a dialog which solicits a new file name to save the current document under. If there is
selected text, the selected text will be saved, not the entire document.

Print
Bring up a pop-up which enables the document to be printed to a printer, or saved to a file.

84 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

Write CRLF
This menu item appears only in the Windows version. It controls the line termination format used
in files written by the text editor. The default is to use the archaic Windows two-byte (DOS)
termination. If this button is unset, the more modern and efficient Unix-style termination is used.
Older Windows programs such as Notepad require two-byte termination. Most newer objects and
programs can use either format, as can the XicTools programs.

Quit
Exit the editor. If the document is modified and not saved, a warning is issued, and the editor is
not exited. Pressing Quit again will exit the editor without saving.

The editor can also be dismissed with the window manager “dismiss window” function, which may
be an ‘X’ button in the title bar. This has the same effect as the Quit button.

The editor is sensitive as a drop receiver. If a file is dragged into the editor and dropped, and neither
of the Load or Read dialogs is visible, the Load dialog will appear with the name of the dropped file
preloaded into the dialog text area. If the drop occurs with the Load dialog visible, the dropped file
name will be entered into the Load dialog. Otherwise, if the Read dialog is visible, the text will be
inserted into that dialog.

If the Ctrl key is held during the drop, and the text is not read-only, the text will instead be inserted
into the document at the insertion point.

The following commands are found in the Edit menu of the text editor.

Undo This will undo the last modification, progressively. The number of operations that can be undone
is unlimited.

Redo This will redo previously undone operations, progressively.

The remaining entries allow copying of selected text to and from other windows. These work with
the clipboard provided by the operating system, which is a means of transferring a data item between
windows on the desktop (see 3.13.3).

Cut to Clipboard
Delete selected text to the clipboard. The accelerator Ctrl-x also performs this operation. This
function is not available if the text is read-only.

Copy to Clipboard
Copy selected text to the clipboard. The accelerator Ctrl-c also performs this operation. This
function is available whether or not the text is read-only.

Paste from Clipboard
Paste the contents of the clipboard into the document at the cursor location. The accelerator
Ctrl-v also performs this operation. This function is not available if the text is read-only.

Paste Primary (Unix/Linux only)
Paste the contents of the primary selection register into the document at the cursor location. The
accelerator Alt-p also performs this operation. This function is not available if the text is read-only.

The following commands are found in the Options menu of the editor.

3.13. TEXT ENTRY WINDOWS 85

Search
Pop up a dialog which solicits a regular expression to search for in the document. The up and
down arrow buttons will perform the search, in the direction of the arrows. If the No Case button
is active, case will be ignored in the search. The next matching text in the document will be
highlighted. If there is no match, “not found” will be displayed in the message area of the pop-up.

The search starts at the current text insertion point (the location of the I-beam cursor). This may
not be visible if the text is read-only, but the location can be set by clicking with button 1. The
search does not wrap.

Font
This brings up a tool for selecting the font to use in the text window. Selecting a font will change
the present font, and will set the default font for new text editor class windows. This includes the
file browser and mail client pop-ups.

The GTK interface provides a number of default key bindings (see 3.13.4) which also apply to single-
line text entry windows. These are actually programmable, and the advanced user may wish to augment
the default set locally.

3.13.3 Selections and Clipboards

Under Unix/Linux, there are two similar data transfer registers: the “primary selection”, and the “clip-
board”. both correspond to system-wide registers, which can accommodate one data item (usually a
text string) each. When text is selected in any window, usually by dragging over the text with button 1
held down, that text is automatically copied into the primary selection register. The primary selection
can be “pasted” into other windows that are accepting text entry.

The clipboard, on the other hand, is generally set and used only by the GTK text-entry widgets.
This includes the single-line entry used in many places, and the multi-line text window used in the text
editor (see 3.13.2), file browser, and some other places including error reporting and info windows. From
these windows, there are key bindings that cut (erase) or copy selected text to the clipboard, or paste
clipboard text into the window. The cut/paste functions are only available if text in the window is
editable, copy is always available.

Under Windows there is a single “Windows clipboard” which is a system-wide data-transfer register
that can accommodate a single data item (usually a string). This can be used to pass data between
windows. In use, the Windows clipboard is somewhat like the Unix/Linux clipboard.

Text in most text display windows can be selected by dragging with button 1 held down, however
the selected text is not automatically added to the Windows clipboard. On must initiate a cut or copy
operation in the window to actually save the selected text to the Windows clipboard. The “copy to
clipboard” accelerator Ctrl-c is available from most windows that present highlighted or selected text.
Note that there is no indication when text is copied to the clipboard, the selected text in all windows
is unaffected, i.e., it won’t change color or disappear. The user must remember which text was most
recently copied to the Windows clipboard.

Clicking with button 2 will paste the primary selection into the line at the click location, if the
window text is editable.

Clicking with button 3 will will bring up a context menu. From the menu, the user can select editing
operations.

The GTK interface hides the details of the underlying selection mechanisms, creating a consistent
interface under Windows or Uniix/Linux. There is one important difference, however: in Windows, the

86 CHAPTER 3. GRAPHICAL INTERFACE, COMMANDS AND OPERATIONS

primary selection applies only to the program containing the selection. In Unix/Linux, the primary
selection applies to the entire desktop.

3.13.4 GTK Text Input Key Bindings

The following table provides the key bindings for editable text entry areas in GTK-2. However, be
advised that these bindings are programmable, and may be augmented or changed by installation of a
local theme.

GTK Single-Line Bindings

Ctrl-a Select all text

Ctrl-c Copy selected text to clipboard
Ctrl-v Paste clipboard at cursor

Ctrl-x Cut selection to clipboard
Home Move cursor to beginning of line
End Move cursor to end of line

Left Move cursor left one character
Ctrl-Left Move cursor left one word
Right Move cursor right one character
Ctrl-Right Move cursor right one word
Backspace Delete previous character

Ctrl-Backspace
Clear

Delete previous word
Delete current line

Shift-Insert Paste clipboard at cursor
Ctrl-Insert Copy selected text to clipboard
Delete Delete next character
Shift-Delete Cut selected text to clipboard
Ctrl-Delete Delete next word

Clicking with button 1 will move the cursor to that location. Double clicking will select the clicked-
on word. Triple clicking will select the entire line. Button 1 is also used to select text by dragging the
pointer over the text to select.

Clicking with button 2 will paste the primary selection into the line at the click location, if the
window text is editable.

Clicking with button 3 will will bring up a context menu. From the menu, the user can select editing
operations.

These operations are basically the same in Windows and Unix/Linux, with one important difference:
in Windows, the primary selection applies only to the program containing the selection. In Unix/Linux,
the primary selection applies to the entire desktop, like the clipboard.

Special characters can be entered using the Unicode escape Ctrl-u. The sequence starts by pressing
Ctrl-u, then entering hex digits representing the character code, and is terminated with a space character
or Enter. The Unicode coding can be obtained from tables provided on the internet, or from applications
such as KCharSelect which is part of the KDE desktop. These are generally expressed as “U + xxxx”
where the xxxx is a hex number. It is the hex number that should be entered following Ctrl-u. For
example, the code for 7 (pi) is 03c0. Note that special characters can also be selected and copied, or in
some cases dragged and dropped, from another window.

Chapter 4
Using Xic

Xic has two basic operating modes: physical and electrical. In physical mode, one is editing the geometry
of the mask patterns on the multiple layers used in the photomasks to manufacture the circuit. In
electrical mode, one is editing an electrical schematic of the circuit or subcircuit represented by the cell.
The schematic is used for documentation, and also for performing simulation of the circuit to verify
performance. The schematic and layout can be interlinked to provide consistency verification. This is
the purpose of the functions in the Extract Menu, to be described in Chapter 16.

A full design database typically consists of a hierarchy of cells. The top level or main cell usually
depicts the entire chip. Subcells represent the bond pads, annotation, and major circuit blocks. The
circuit blocks in turn have subcells representing more primitive circuit blocks, down to the gate level
and below.

In Xic, one can edit any of these cells and their subcells at any depth in the hierarchy, as both physical
layout and electrical schematic. The use of a hierarchical database is far more efficient and convenient
than a flat database. The designer is encouraged to make liberal use of subcells rather than designing
single, highly complex cells.

When a design is complete, i.e., when all electrical simulations and physical design rule checks have
been performed, the physical part of the database can be submitted for processing. The exact mechanism
varies with organization, but the physical-only (Strip For Export button in the Export Control panel
from the Convert Menu active) GDSII, OASIS and CIF outputs provided by Xic are portable to any
mask fabrication facility or foundry.

The user can switch between physical and electrical modes at any time, by pressing the Electrical or
Physical button (whichever appears) in the View Menu. Sub-windows, brought up with the Viewport
button in the View Menu, are individually switchable between schematic and physical views. The side
menus differ somewhat between the two modes, and some menu commands operate a little differently.

The next two sections of this chapter provide an introduction to editing in physical and electrical
modes. The remaining sections provide information on certain Xic operation modes and features, and
are somewhat more advanced in nature. The following chapters provide detailed information on all of
the menu command functions.

The new user should read the first two sections of this chapter, and practice using Xic while reading
the help messages.

87

88 CHAPTER 4. USING XIC

4.1 Physical Layout Editing

In physical mode, one arranges geometrical shapes on the various layers to produce a working circuit.
One can also place subcells, which have been previously created. The knowledge of what shapes to
place, and where, is dependent on the technology in use, and represents the essence of integrated circuit
engineering. The user must be familiar with these fundamentals, as Xic is only a tool for application of
this knowledge.

The basic primitive used by Xic is the box. Boxes are filled rectangular structures representing an
area of opacity on the corresponding mask level. The box button in the side menu, with the rectangular
icon, is used to create boxes. With the box button active, the user points to the two diagonal corners
of the box desired in the drawing window, and a colored box will appear. The color and fill pattern are
set for each layer in the technology file, and can be changed by the user with the Set Color and Set
Fill buttons in the Attributes Menu. The layer can be selected by clicking on the desired layer in the
layer table, which is arrayed near the bottom of the main Xic window. Note that when boxes created
on the same level overlap, they are clipped or merged so as to not actually overlap. This increases the
storage and retrieval efficiency of the database.

If the created box is too small or otherwise causes a design rule violation, a message will appear, if
interactive rule checking is active. By default, all objects are checked for design rule violations when
they are added to the database, though this can be set otherwise in the technology file or if the Set
Interactive button in the DRC Menu is not active. Objects that “fail” are actually in the database,
and it is the responsibility of the user to correct the error when it is flagged.

Boxes can be used exclusively to create a working circuit, however other structures are sometimes
more convenient. Wires are fixed-width paths that are often used to make electrical connections. The
wire button in the side menu allows the creation of wires, and the style button can be used to change
or set the wire width and end style. The wire button has a sideways L-shaped icon. Every layer has
a default wire width. To construct a wire, simply click on the points of the drawing window which
correspond to wire vertices, and click the last vertex twice to end the wire. Note that the wire can
zigzag at any angle, however the angles can be fixed to multiples of 45 degrees by setting the Constrain
angles to 45 degree multiples check box in the Editing Setup panel from the Edit Menu. Also
note that acute angles will most likely cause a design rule violation message to appear.

Polygons are constructed in a manner similar to wires, using the polyg button in the side menu. This
button has a triangle icon. The polygon is constructed by clicking at each desired vertex location, and
is terminated by clicking again on the first vertex. Polygons can have edges with arbitrary angles, which
can be constrained to multiples of 45 degrees with the Constrain angles to 45 degree multiples
check box in the Editing Setup panel. Again, acute angles are likely to cause design rule violations.
Polygons are most useful for constructing rounded or off-angle shapes used in high frequency circuits.
It is also slightly more efficient to use polygons rather than a collection of boxes.

With none of the geometry-creating buttons active, clicking on an object can cause it to be “selected”.
Only objects on layers that are selectable, as shown in the layer table, can be selected. A selected object
will be outlined with a flashing highlight. Selected objects are used by many of the other commands.
An object can be deselected by clicking on it a second time. The status window below the layer table
will indicate the number of objects selected. Multiple objects can be selected at once by pressing and
holding button 1, dragging the pointer, and releasing. A ghost-drawn rectangle will appear during this
operation. Objects which overlap this rectangle will be selected (or deselected if already selected). All
selected objects can be deselected with the desel button in the top button menu (above the main drawing
window).

Once selected, an object can be deleted, either by pressing the Delete key, or by pressing the Delete

4.2. ELECTRICAL SCHEMATIC EDITING 89

button in the Modify Menu. The objects will disappear from the screen, and the database.

Almost any operation which modifies the database can be undone with the Undo button in the
Modify Menu, which is equivalent to pressing the Tab key. The last 25 operation are saved, and can
be undone. The Redo button, or equivalently Shift-Tab will redo the last undo. All of the undone
operations are saved in the redo list, however the redo list is cleared after each new operation that is
not an undo.

The Stretch button in the Modify Menu is used to modify the shapes or sizes of boxes, polygons,
wires, and labels. By pointing at the edge or corner of a box, one can move that edge or corner to a new
location. Similarly, polygon and wire vertices can be moved. Polygons and wires can also be modified
with the vertex editor built into the polyg and wire command buttons. If a polygon or wire is selected
before pressing the corresponding command button, the vertices of the selected object will be marked.
The selected vertices can be deleted or moved, and new vertices added.

The erase button in the side menu has an icon consisting of a box with a corner missing. This
button is used to delete parts of objects. One clicks twice, or presses and drags, to define a rectangle,
which is ghost-drawn during the operation. This rectangular area will be cleared of fill from any box,
polygon, or wire. Wires may not be entirely erased, as they are only cut at points where the central
path crosses the erase box boundary.

The user may have already designed one or more cells using Xic, which are then available for use as
subcells in the present layout. Subcells are called and placed with the place command button in the
side menu. After pressing the place button, the Cell Placement Control pop-up will appear, which
allows the user to select a cell to place from cells that have been placed previously, or to enter a new cell
name to place. The cell name can be dragged from the File Selection panel or from the list pop-ups
in the File Menu. In addition, the List pop-ups contain a Place button which will also set the name
of the current “master” cell to be placed, and pop up the Cell Placement Control pop-up if it is not
already visible. When the Place button in the Cell Placement Control pop-up is active, the current
“master” will be “attached” to the mouse pointer, and instances will be placed at locations where the
user clicks with mouse button 1 in the drawing. There is provision in the Cell Placement Control
pop-up to define array parameters, so that an array of instances will be created rather than a single
instance. The placement mode can be exited by pressing the Esc key, or by unsetting the Place button
in the Cell Placement Control pop-up.

Once a physical layout is substantially complete, the layout is a candidate for batch design rule
checking and extraction. These capabilities are described in detail in later chapters.

This brief introduction should convey the flavor of using Xic in physical mode. There are many more
commands, and some of the commands introduced have additional features not mentioned. The best
way to learn Xic is to use it, and read the on-line help available for the commands. After pressing the
Help button in the Help Menu, pressing any command button will bring up a help screen describing
the command. Reading the help and then trying the operation is the fastest way to learn. The help
mode, and any command, can ge exited by pressing the Esc key.

4.2 Electrical Schematic Editing

The electical mode of Xic allows a schematic representation of the cell to be entered. This electrical
representation is used to generate a SPICE file for simulation purposes, by WRspice or another simulator.
The electrical representation can be generated or updated from the physical layout, if extraction has
been properly set up, and can be compared with the physical representation to identify wiring errors.

The electrical representation of a hierarchy of cells follows the same hierarchy as the physical cells, for

90 CHAPTER 4. USING XIC

the most part. Physical cells that contain wire only, i.e., no devices or subcircuits, generally do not have
an electrical-mode counterpart. Such cells are effectively flattened into their parents in the electrical
representation. The physical implementation of devices can include structure from subcells. In this case,
the electrical implementation of the device is in the electrical cell corresponding to the top-level physical
cell containing the device geometry.

One does not need a physical representation in order to use electrical mode. In this case, Xic is used
exclusively as a schematic capture front-end for WRspice or another SPICE-compatible simulator.

This section will focus on the mechanics of schematic entry and simulation using WRspice. The
chapter on extraction (16) will provide detail on how the electrical and physical data can be made to
interact.

To produce a schematic cell, one follows this basic outline:

1. Devices from the device menu or some other source are placed at various locations in the drawing.
Also, subcircuits from the user’s library are similarly added to the drawing.

2. The devices and subcircuits are wired together.

3. Properties are given to the devices, which designate component values, models referenced, or other
information.

4. If the cell is to be used as a subcircuit in another schematic, connection points are added, and
possibly a symbolic representation defined.

5. A SPICE file representing the present hierarchy can be generated at this point, or, if the circuit is
top-level (not used as a subcircuit) interactive simulation using WRspice is possible.

The following sections will describe these steps in more detail.

A prerequisite for using electrical mode is basic knowledge of the SPICE syntax and SPICE file
format. One does not need to be an expert, but a certain proficiency is assumed for such steps as
property setting. It is recommended that users unfamiliar with SPICE skim the WRspice manual or
other reference.

4.2.1 Placement of Devices and Subcircuits

Xic is distributed with a representative device library, which is contained in a file named device.lib
found in the installation startup directory. This contains most if not all of the devices supported by
WRspice, however it may be necessary to customize this file to the user’s unique requirements. The
format of this file is described in the appendix. The devices found in the device library file are those
listed in the device menu, which is available while in electrical mode.

Devices can also be supplied in cell files, or from an OpenAccess database. For example, it is feasible
to use devices from the analogLib library from a Virtuoso installation, or from a foundry design kit.

Xic usually starts in physical mode, though if given the -E option on the command line Xic will
start in electrical mode. To switch from physical to electrical mode, press the Electrical button in the
View Menu. Xic will reconfigure the side menu, and display the schematic for the current cell (if any).
Pressing the devs button in the side menu will bring up a device menu which extends across the top of
the main Xic window. There are two styles of device menu available. The default menu consists of an
array of lettered buttons. Pressing button 1 while the pointer is over one of these buttons will cause a
drop-down menu to appear, which consists of more buttons containing device names. The first letter of

4.2. ELECTRICAL SCHEMATIC EDITING 91

these devices is that on the original button. A device can be selected by releasing button 1 while the
pointer is over the desired button.

A second device menu style consists of panels containing the names and schematic symbols of the
various devices with perhaps a button with a right-pointing arrow, if the selections do not entirely fit
on-screen. Clicking on the arrow button will show the devices which did not fit in the initial menu. This
menu has the disadvantage of occupying a lot of screen space, but it may be easier for new users.

Both menu styles contain a button that switches to the other style of menu. The present style will
be used until changed by the user. The style used is completely arbitrary, and simply a user-preference.

Clicking on one of the device panels in the pictorial menu, or releasing button 1 on a selection in the
pull-down menu will attach the schematic symbol to the mouse pointer. Then clicking in the drawing
window will leave instances of that device at those locations. Press Esc to exit this mode. This is the
means by which devices are added to the circuit. New devices can also be produced by using a copy
operation (a button 1 operation, or explicitly using the Copy command in the Modify Menu) from
an existing device in the circuit.

The user may have already designed one or more circuits using Xic, which are then available for use
as subcircuits in the present schematic. The details of how to create a “true” subcircuit will be presented
shortly; for now, assume that such cells already exist. Subcircuits are called and placed with the place
command in the side menu, in the same manner as subcells in physical mode. After pressing the place
button, the Cell Placement Control pop-up will appear, which allows the user to select a cell to place
from cells that have been placed previously, or to enter a new cell name to place. The cell name can be
dragged from the File Selection panel or from the List pop-ups in the File Menu. In addition, the
List pop-ups contain a Place button which will also set the name of the current “master” cell to be
placed, and pop up the Cell Placement Control pop-up if it is not already visible. When the Place
button in the Cell Placement Control pop-up is active, the current “master” will be “attached” to
the mouse pointer, and instances will be placed at locations where the user clicks with mouse button 1
in the drawing. The placement mode can be exited by pressing the Esc key, or by unsetting the Place
button in the Cell Placement Control pop-up.

Once devices and subcircuits have been placed in the drawing, they can be moved and copied as for
physical cells. Not all of the transformations of physical mode are available, however, from the xform
command in the side menu. Specifically, rotations are limited to multiples of 90 degrees, and there is no
magnification capability.

4.2.2 Semiconductor Devices

The device menu contains symbols for the semiconductor devices supported by WRspice. These include
diodes, bipolar and junction field-effect transistors, MESFETSs, and MOSFETs.

92 CHAPTER 4. USING XIC

Device Description

dio junction diode

npn npn bipolar transistor

pnp pnp bipolar transistor

njf n-channel junction field-effect transistor
pjf p-channel junction field-effect transistor

nmes n-MESFET
pmes p-MESFET
nmos n-MOSFET (3-terminal)
pmos p-MOSFET (3-terminal)
nmosl n-MOSFET (4-terminal)
pmosl ~ p-MOSFET (4-terminal)

Unlike simple devices such as resistors and capacitors, which are fully specified by a value, these
devices almost always require a model. The model is specified with a model property, which is applied
to the device in the same way that a value property is applied to a simple device.

In order for Xic to include the model in the SPICE file, the model must be available to Xic. Device
models are provided to Xic through a file read by Xic when the program starts. When Xic starts,
it traverses the library search path, looking for model files. A model file is 1) a file usually named
“model.lib”, in which case the first such file is read, or 2) any file found in a subdirectory usually
named “models” of a directory in the search path. The names assumed (“model.lib” and “models”)
can be changed in the technology file.

The files that contain the models consist of the .model lines for SPICE. These blocks are placed one
after another, with no order assumed.

Perhaps the simplest way to add a model to Xic is through the model.1ib file. A skeletal model.lib
file is provided with Xic, in the startup directory. Models added to this file will be available to all users.
If a copy of the model.1lib file is placed in the current directory, (which is always searched first) then
that file will be used instead. The first model.1lib file found in the library search path will be used.
This allows users to access their own custom model.1lib file.

If large numbers of models are to be added, it may be more convenient to add a “models” subdirectory
to one of the directories in the library search path. One may add a directory to the search path for this
purpose. In the models subdirectory, add the files containing the SPICE models. The file names are
unimportant, and all files found in the subdirectory will be searched.

Each model block starts with
.model modname modtype

The modname is an arbitrary word which designates the model, and this should be unique among all
of the models Xic will find along the library search path. The modtype is the SPICE name for the model
for a given device, as specified in the WRspice documentation. The remaining text consists of parameter
value assignments as per the documentation. The modname should be used in a model property of the
devices that are to use the model.

There are two different MOS device types: the nmosl/pmosl devices contain stubs for all four
nodes (gate, drain, source, and bulk). The nmos/pmos devices automatically connect the bulk node
to global nodes named NSUB and PSUB, respectively. Most of the time, it is more convenient to use
the nmos/pmos devices to avoid having to make explicit contact to the substrate nodes in the circuit,
however one must remember to bias the NSUB and PSUB nodes. To do this:

4.2. ELECTRICAL SCHEMATIC EDITING 93

If there is one or more nmos devices in the circuit:

Add a voltage source to the schematic.

Place a ground terminal on the negative terminal of the voltage source.
Place a tbar terminal device on the positive terminal of the voltage source.
Select the ‘tbar’ label of this terminal device.

Press the label button (side menu), and change the name from “tbar” to “NSUB”.

S A o

Add a value property to the voltage source to set the substrate voltage. This procedure is
described below.

If there is one or more pmos devices in the circuit:
Follow the same procedure above, however use “PSUB” as the name for the tbar device.

This will provide a dc bias voltage to the common connection of all of the nmos and pmos bulk nodes
in the circuit. The value of NSUB is usually equal to the most negative supply voltage in the circuit,
and the value of PSUB is usually equal to the most positive voltage in the circuit.

4.2.3 Wiring Devices and Subcircuits

Once the devices and subcircuits have been placed, wires can be added to make connections between
them. This is not typically a two-step process, as most users build a schematic by mixing placement
and wiring operations.

First, it should be stressed that connections do not always require wires, and in particular it is
often most convenient to make connections between devices by abutment. Devices and subcircuits have
specific local coordinates where a connection is possible. In a device, these are typically at the end of the
wire stubs shown as part of the device symbol. In subcircuits, these are the terminal locations defined
by the designer of the subcell, and can be made visible with the terms button in the side menu. When
moving or placing a device, or creating a wire, visual feedback is provided when the mouse pointer is over
a possible connection point. Connections can only occur at the connection points. The Connection
Dots button in the Attributes Menu can be used to draw a dot at all connection locations.

The devices in the device menu should mostly be familiar to users of SPICE. There are special
terminal “devices” that can be used instead of wires to provide interconnections. These are the “gnd”,
“tbar” and equivalent terminals. In the first case, the symbol is of a ground connection, and it provides
exactly that. At least one point of every circuit must be grounded, or the SPICE simulation may fail.
The tbar terminal is more general purpose. As it is, this terminal will tie all locations attached to such
terminals together. This is a convenient way of distributing a power net, for example. If the name label
of the tbar device is changed, then all locations attached to terminals with this name will form a different
network. The easiest way to change the name is to click on the “tbar” label of an existing tbar device
(thus selecting the label), then press the label button in the side menu. The user will be prompted for
a new string. Once the new string has been entered, the label will be updated, and the terminal can be
copied to other locations to from the network.

Remaining connections are made with the wires button in the side menu, which has an icon that
looks like a sideways L. Before generating wires for connections, the user should make sure that the
current layer is the “SCED” layer. Wires on this layer are electrically active. Wires created on other
layers are for decoration purposes only, unless the WireActive flag is set for the layer.

94 CHAPTER 4. USING XIC

Wires are used to connect the devices together by clicking on the vertex locations of the wires. The
vertices must be on the contact points of devices and subcircuits, i.e., the ends of the connecting wire
stubs of the devices, and the terminal locations of subcircuits. These vertices are created automatically
in horizontal or vertical wire segments which cross over contact points.

One of the problems that some new users encounter is that contact is not made due to improper
placement of wires in relation to device contact points. To reiterate the previous discussion, only the
ends of the wire stubs of devices are “active”, and these must physically coincide with a wire vertex.
Although a vertex will generally be created if necessary in an intersecting wire, new users should form
the habit of explicitly creating a vertex, by clicking on the contact point while creating the wire,

In electrical mode, the first layer in the layer table is a layer named “SCED”. This is an active wiring
layer, and by default only this layer can be used for electrically significant wires. The layer named
“SPTX” is also active, in that labels on this layer are included in the SPICE text generated for the cell.
Other layers are used for visual purposes only (such as color-coding the displayed property labels), or
for temporary “storage” of parts of the circuit not in use. The Chg Layer button in the Edit Menu
is used to change the layer of objects.

The additional layers can be used for anything, but serve the following purposes:

SCED active wiring layer

SPTX active label layer

NAME device/subcircuit name property labels
MODL device model property labels

VALU device value property labels

PARM device/subcircuit param property labels
NODE terminal label

ETC1 general purpose

ETC2 general purpose

The Connection Dots button can be used to show dots at connection points. New users often
appreciate the feedback provided by the Connection Dots button that a connection has been made.
One has a choice of whether dots appear at every connection, or only at those likely to be ambiguous.
When a wire is created, if it runs over a device terminal or a vertex of another wire while horizontal
or vertical, a vertex is generated, which implies a connection. Two wires crossing do not connect,
unless a vertex existed in one of the wires at the crossing point. Sometimes, is is desirable to remove a
connection, or to enforce a connection of two crossing wires. This can be accomplished with the vertex
editor available with the wires button. First, select the wire by clicking on it. After pressing the wires
button, each vertex of the wire will be shown with a small box. Clicking on a vertex box will select that
vertex, and allow the vertex to be dragged to a new location or deleted. In either case, the connection
to an underlying vertex or device terminal will be broken. To add a vertex, click on the selected wire
at the point where the vertex is to be added. A new vertex box will appear. If there is an underlying
device terminal or wire vertex, a connection will have been established. If two wires cross with neither
wire having a vertex at the crossing point, adding a vertex to one of the wires will automatically add a
corresponding vertex to the second wire if the second wire is horizontal or vertical at the crossing point.

4.2.4 Adding Properties to Devices

Once the devices have been placed, device properties can be assigned. This is the method by which Xic
knows the values, models, and other characteristics of the devices. Device properties are initially added
with the Property Editor brought up by the Properties button in the Edit Menu. The Property

4.2. ELECTRICAL SCHEMATIC EDITING 95

Editor contains a text window showing the properties of a selected device, if any. The features and
capabilities of the Property Editor are rather complicated, and are described fully in the section of
this manual (10.10) describing the Properties command in the Edit Menu. This section will describe
some of the basic operations.

At this point there are four properties of interest: devref, value, model, and param. The purpose of
the devref property is to hold the name of a device whose current is to be referenced. This is used by
the current-controlled sources and switch devices only. The value and model are just different names for
the same underlying text field, thus a device should not be assigned both a value and a model property.
The param property will hold text for initial condition and parameter assignment.

The string for a device, which will be generated in SPICE output, has the generic form
device_name node_list [dev_ref] model_or_value [parameters|

The current-controlled dependent sources and switch require a devref property. This should not be
used in other devices. Every device should have a model or value assigned. The parameter (param
property) is optional, but may be needed for certain devices for particular types of simulation. It is also
used to provide parameter values, such as the width or length of a MOSFET. This is where knowledge
of the SPICE syntax is necessary, in order to know what parameters are required for a given device.

For simple devices such as resistors, only a value property is generally required. To apply a value
property, with the Property Editor visible, click on the device to receive the property. The editor
will list any existing properties, and the selected device will be highlighted. From the Add menu of the
Property Editor, press the Value button, and enter the value on the prompt line, followed by Enter.
A label showing the new value will appear next to the selected device.

The “value” can be just about any string, so it is important that this input have relevance to SPICE.
The format of the numerical entries is as recognized by SPICE, in MKS units. One common error is
to leave off the units, e.g., entering “50” for the value of a capacitor when the correct entry should be
“50fF”. Of course, “50e-15" would suffice as well in this case.

The Global button on the Property Editor can be used to set the properties of several devices at
once. The Edit button can be used to edit an existing property. Once a property has been assigned
to a device, copies of the device will contain the same property, thus it may be preferable to assign
properties in part early in the placement step, and generate copies of similar devices rather than placing
new instances.

Once a property has been assigned, it can be changed with the label editor, thus the Property
Editor needs to be invoked only for the initial assignment. To change the value of any editable property,
select the label displaying that value (you can select properties in multiple devices). Then, press the
label button in the side menu. This will prompt for a new value, and when given, all of the selected
labels will be updated with the new value, and the underlying properties will have been changed.

4.2.5 Creating Subcircuits

In order for a cell to be a valid subcircuit, i.e., electrically active when placed into another cell, one or
more contact terminal locations must be defined. This is accomplished with the subct button in the
side menu. When this button is pressed, the user may click on contact points within the circuit to define
contact locations. Only valid contact points can be selected, i.e., the point must fall on a wire vertex, or
a contact point of a device or subcircuit. When a valid point is clicked on, a boxed digit will appear at
the location, and a pop-up window will appear allowing the user to set the name and other properties
of the terminal. If no name is given, Xic will use a default name.

96 CHAPTER 4. USING XIC

Clicking on an existing terminal will start a move operation on the terminal, attaching its outline to
the mouse pointer. Pressing the Delete key at this point will delete the terminal. Clicking on a terminal
with the Shift key held, or double-clicking, will bring up the terminal editing window for the terminal,
allowing modification of its properties.

The terms button in the side menu, when on, will display the terminal locations, as well as the
terminal locations of subcells in the drawing.

Subcells will most often have terminals defined, which are the connections points to the cell. It is
possible, though, that a subcell will have no terminals, if connection is made via global nets. Imagine
a subcell containing only a capacitor, which is connected to global nets vdd! and ground. Adding an
instance of the cell is equivalent to adding a decoupling capacitor.

It is possible, after an instance of a cell has been placed, to use the Push command to push into the
new cell, and define additional subcircuit contacts, and pop back to the parent cell.

In some cases, it is preferable that the subcell be displayed as a symbol, rather than a schematic,
when expanded. For example, if the subcell represents an AND gate, and there are many instances of
the subcell, the drawing of the parent cell will appear much neater if the AND gate cell is represented
by an AND symbol rather than its full schematic. One can define such a representation with the symbl
button in the side menu.

On pressing the symbl button for a cell without a previous symbolic representation defined, the
schematic will disappear, and the screen will be blank. One is free to use the objects from the shapes
menu, wires, and labels, on any of the layers, to construct a symbol which will be displayed for that
cell. When the new drawing is complete, the subct button should be pressed again. This will make the
contact point indicators visible, however they will be in arbitrary locations. The user should move the
terminals to where they belong in the symbolic representation, by dragging them with the left mouse
button. Unlike in the normal schematic representation, the terminals can be placed anywhere. It is
possible to copy terminals by holding Shift during the “move”, so that the symbol may have multiple
connection points for the same terminal.

New terminals can be added, or terminals deleted, only by returning to schematic mode, and similarly
the schematic can be edited only by returning to schematic mode. The display status of the cell is set
by the status of the symbl button when it was saved to disk, or last edited if it is still in memory.

4.2.6 Node and Device Naming

Xic will assign names and node numbers to the device, subcircuits and nodes in the circuit, by default.
These will be unique numbers for each type of device and for each node. One problem, however, is that
these numbers will change when the circuit topology is changed. Often, the SPICE output may be used
by another application, that may need to access circuit node voltages, for example, in a predictable way.
Thus, Xic has provision for assigning an immutable name to wire nets, and to devices and subcircuits.

By default, device names are assigned by Xic as the device key letter followed by an integer that
Xic generates. This can be overridden by assigning a name property to the device. The procedure is
identical to assigning the properties that we have discussed previously. The Name button in the Add
menu of the Property Editor is used. Although the string that is entered as the name property can
be anything, there are some very important constraints for correct SPICE output.

1. The first letter of the name must be the same (case insensitive) as the default name. This is the
‘key’ that identifies the type of device in SPICE.

2. The name should be a single word containing alpha-numeric characters only.

4.2. ELECTRICAL SCHEMATIC EDITING 97

3. The name should be unique in the circuit.

Although Xic provides flexibility in assigning this property, SPICE simulations will fail unless these
constraints are observed. Once the name property is assigned to a device, that name, rather than the
default, will be used to reference the device. The name will appear in a label next to the device on-screen.
As we have previously seen, the name can be modified subsequently with the label editor.

The procedure for assignment of names to subcircuits is identical. The ‘key’ letter for subcircuits is
‘X,

The node mapping editor, which appears when the nodmp button in the side menu is pressed, is
used to assign names to nodes. A “node” is SPICE terminology for a collection of one or more device
and subcircuit terminals that are connected together. Each node is given a unique number by Xic, which
is used as the node “name” in SPICE output. The node mapping editor allows the node to have an
assigned name, which will be used instead.

Full information on the node mapping editor can be found in the section describing the nodmp
command (7.11). Here, we will briefly outline its use. The left panel of the node mapping editor
contains a list of the circuit nodes, with the left column containing the internal number, and the right
column containing the assigned name, if any. Selecting an entry in this list will cause the device terminals
for that node to be listed in the right panel, and these will be highlighted in the schematic. Pressing
the Rename button will prompt the user for a name for that node. This can be any word consisting of
alpha-numeric characters. This word will be used in SPICE output to designate the node, rather than
the number.

4.2.7 Connectivity Overview

Thus far we have described the basic methodology for producing a schematic. Armed with this infor-
mation, users can quickly produce schematics of simple circuits. However, a lot has been skipped over,
including the use of multi-conductor nets and vectorized instances. This section will review the basic
connectivity concepts, and introduce these new topics.

Devices and subcircuits generally have “pins” which are hot-spots in the drawing where connection
can occur. These hot spots may or may not be marked in the device or subcircuit symbol or schematic.
In any case, pressing the terms button in the electrical side menu will cause the display of terminal
symbols at these locations.

The current cell will have its own terminal locations, if any have been defined with the subct
command in the side menu. These will be the connections points to instances of the current cell.

Establishing connectivity in the schematic involves logically grouping the device, subcircuit, and cell
terminals that should be connected. Each such group is termed a “net”. There are a number of ways to
define this grouping.

1. Most commonly, a wire is placed by the user using the wire command in the side menu. To
establish connectivity, a vertex of the wire must be at a connector hot-spot. If the dots display is
enabled, a dot may be shown at the connection points.

2. Connection points whose hot-spots are placed at the same location will be connected.

These two methods illustrate connection by location. It is also possible to use connection by name.
For this, one must use named nets. Looking ahead just a bit, it is possible for a net to be scalar (single

98 CHAPTER 4. USING XIC

conductor) or multi-conductor. The type of net is described by the name, which is interpreted as a “net
expression”, which is a syntax which allows detailed definition of the conductors in the net.

There are several ways by which a net can acquire a name.

1. Nets connected to named cell terminals will have the same name as the cell terminal, but only if
the terminal has an applied name. Names can be given to cell terminals with the subct command
in the side menu.

2. A scalar (single conductor) net can be assigned a name with the Node (Net) Name Mapping
panel brought up with the nodmp button in the side menu. This name has priority over the
“candidate names” applied with wire labels or terminal devices.

3. A candidate net name will be supplied by associated labels of wires in the net. A label is given to
a wire through the following procedure.

e In electrical mode, select a single wire, which shall receive a name.
e Press the label button in the side menu.
e Type the label text in the prompt line, and press the Enter key.

e The label is ghost-drawn and attached to the mouse pointer. Resize or rotate the label if
desired, and click in the drawing near the selected wire to place the label. This completes the
operation.

4. A candidate net name can also be supplied by placing a terminal device from the device library in
contact with the net. The device library provides several terminal styles. Each has a label that can
be edited to apply a net name. Once placed, the label can be selected, the label button pressed,
and new label text entered.

A scalar net may have multiple “candidate names”, and each can be used to establish connections
by name. However, the single name chosen to represent the net in netlist output will be the name that
comes first in alphabetical order.

Nets that otherwise appear disjoint but have a common name are actually connected. This illustrates
connect by name. In fact, it is possible to draw perfectly good schematics without using wires, by using
terminal devices only. The schematics produced by Xic from SPICE files or physical extraction use this
approach.

Xic supports multi-conductor wire nets in schematics, using a syntax and methodology that should
be familiar to users of Cadence Virtuoso. The net name uses a syntax which describes the net. Unnamed
nets will assume the characteristics of connected terminals.

There are three types of net.

Scalar nets
Single-conductor “scalar” nets provide the basic connectivity description in a schematic, and are
the only electrical nets that may have a counterpart in the physical layout.

A scalar net name consists of a simple name, or an indexed vector name, in a format to be described.

Vector nets
A vector net contains multiple conductors, accessible as indices in a range, with a common base
name. A name specifying a vector net may have the form

basename [start : end]

4.2. ELECTRICAL SCHEMATIC EDITING 99

The start and end are non-negative integers. The two colon-separated numbers provides a range
of subscripts which identify the individual conductors, or “bits”, of the net.

For example, the vector net “foo[3:0]” consists of four conductors, in order “foo[3]”, “foo[2]”,
“foo[1]”, and “foo[0]”. Note that the range values can be ascending or descending.

In Xic, the square brackets can be replaced by <...> or {...}. That is, for subscripting in Xic,
square brackets, curly brackets, and angle brackets are equivalent. This documentation will use
square brackets.

Vector nets differ fundamentally from scalar nets in Xic in that they simply reference scalar nets.
The scalar nets actually provide the electrical connections, and the correspondence between layout
and schematic. The vector and multi conductor nets in general simply provide an organizational
framework for the scalar nets.

In particular, this requires that each “bit” of a vector net have an existing scalar net of the same
name. In the example above, for the vector net foo[3:0] to be valid, the individual scalar nets
foo[3] etc. must exist.

Bundle nets
A bundle net is a net of nets. Its name is a net expression consisting of comma-separated names
of scalar and vector nets. Some examples would be

a,datal[0:7],addr[2]
b0,bl1,b2

These are simple cases of a net expression which describes the conductor sequence of a general
net. Net expressions and vector expressions may be familiar from Cadence Virtuoso, and in fact
the same operations and syntax are supported.

4.2.8 Net and Vector Expressions

The name of a net is parsed as an expression using a set of rules to be described. The result of this
interpretation is that each conductor (“bit”) of the net has a well-defined name, which is associated by
name with all other nets in the cell with bits of a matching name.

We say “matching” rather than “the same” as Xic will ignore the different subscripting characters.
In Xic, square, curly, and angle brackets are accepted for subscripting, thus the forms foo<2>, foo[2],
and foo{2} are equivalent ane can be freely intermixed in the design.

A net expression consists of one or more comma-separated terms.
net expression = term|,term]...
A term has the general form

subterm = name[vector expression]
multiplier = [*N], or

multiplier = N*

term = [multiplier|subterm, or
term = [multiplier] (term|[, term]...)

The basic element of a term is a subterm, which consists of a name optionally followed by a wvector

expression. The name is an alphanumeric text name. The vector expression represents subscripting to
be described.

100 CHAPTER 4. USING XIC

An optional multiplier can prefix the term. This is an integer N, and a literal asterisk, in one of
the forms shown. Here, the literal square brackets can be replaced by curly brackets or angle brackets
equivalently. Both forms of the multiplier prefix are equivalent. The effect of the multiplier is to repeat
what follows N times.

The second form of the term allows for a list of terms, separated by commas and enclosed in paren-
theses. The commas and parentheses are literal. This allows the multiplier to cause repetition of the

group of terms.

The multiplier provides a shorthand way to express repetitions, but is not required. Below are some
examples and equivalences.

3*%A = A,AA
2%(A,B) = A,B,A,B
2%x(A,2%B) = A,B,B,A,B,B

In each case, the shorthand on the left is equivalent to the ordering on the right. The A and B are
scalar conductor names. The third line above, for example, describes a six-conductor net with the net
bits connected to either net A or B in the order shown.

A wector expression represents a sequence on integers, each representing a conductor index.

bit=N

range = N:M|[: 5]

postmult = *N

vector expression = [bit|range[postmult][,...]]

vector expression = [(vector expression],...]) [postmult][,...]]

Again, where literal square brackets are shown, curly brackets and angle brackets are equivalent in Xic.
The elemental decomposition of a vector expression is a comma-separated list of non-negative integers.
A bit constitutes one such integer. A range is specified by two or three colon-separated non-negative
integers. In the simplest and most common form, the range consists of two integers and represents
the two integers and all intermediate integers, in order. If a third integer is given, this represents the
increment. The number sequence consists of the start value, and multiples of the increment, terminating
at the final value that would not fall outside of the range. Note that the increment is always a positive
value, whether the range values are decreasing or increasing. Below are some examples.

[3:0] = [3,2,1,0]
[3:0:2] = [3,1]
[1:4] = [1,2,3,4]
[1:4:4] = [1]

Either can be followed by a postmult multiplier, which causes each element of the sequence to repeat.

[0x2] = [0,0]
[3:0%2] = [3,3,2,2,1,1,0,0]
[1:4:4%2] = [1,1]

The final form illustrates use of literal parentheses and commas to associate a list of vector expressions
to a post-multiplier. The entire list will be repeated. The parentheses can be nested to arbitrary depth.

[(1,3:5)*3] = [1,3,4,5,1,3,4,
2

5,1,3,4,5]
[(1,(2,3%x2)*2,4:6)*2] = [1,2,3,3,2,3

1 5
’3) 3 ’3,4’5,6’1)2,3’3,2’3,3’4’5,6]

>

4.2. ELECTRICAL SCHEMATIC EDITING 101

4.2.9 Vectored Instances

Device and subcell instances can be scalar or vectorized. By giving an instance a range property with
the Property Editor from the Edit Menu, the instance will become vectored. The single schematic
representation in the drawing of a vectored instance actually corresponds to multiple “bit” instances.
This can greatly clarify schematics with repeated circuit blocks.

The connections to a vectored instance are all multi-conductor nets (assuming that the array range
contains more than one element).

4.2.10 Connection Rules

The following rules are applied when connecting by location.

1. Any named scalar net can connect to any other named (or unnamed) scalar net. A scalar net can
have any number of associated names, each of which is a valid target for connect by name.

2. If a scalar net connects to a non-scalar net, the scalar bit will connect to each bit of the non-scalar
net.

3. A net connecting to a vectored instance terminal must have a width equal to one of the following;:

e The total connection width, given by the pin width multiplied by the vector instance width.
For example, suppose that the instance is arrayed [0:3] and the pin is A[0:1]. Suppose that
the connecting net is net [7:0]. Then, all is well as the widths match, and connections will
be as shown.

net[7] = X[0JA[O]
net[6] = X[0]A[1]
net[56] = X[1]A[0]
net[4] = X[1]A[1]
net[3] = X[2]A[0]
net[2] = X[2]A[1]
net[1] = X[3]A[0]
net[0] = X[3]A[1]

If the widths do not match, a warning will be issued. Xic will connect what it can, in an order
like that above, but some bits will remain unconnected.

e The pin width. In this case, a virtual multiplier prefix is applied to the net. For the example
above, but with net[1:0] that matches the width of A[0:1], the connections would be

net[1] = X[0]JA[0], X[1]JA[0], X[2]A[0], X[3]A[0]
net[0] = X[0JA[1], X[11A[1], X[21A[1], X[3]1A[1]

e The width is one (scalar net). In this case, all of the instance pin bits would connect to the
same scalar net.

4. Named multi-contact nets cannot connect to incompatible nets. Two named nets are “compatible”
if one is a “tap” of the other. This will be described in the next section. Violations generate an
error message and no connection is made.

102 CHAPTER 4. USING XIC

4.2.11 Tap Wires

The concept of tap wires may be familiar from Cadence Virtuoso. Tap wires are fully supported in Xic.

A wire is considered to be a “tap” of another wire if every bit in the first wire is included in the
second. Note that they may have very different bit order.

If a wire is a tap for another, then the two wires are allowed to connect. Note, however, that the
visual connection may serve no real purpose, as the bits are already connected by name. However,
the visible indication of connectivity may make the schematic more readable. The tap wire will allow
connection to a subset of the conductors in the wire being tapped.

An interesting special case is when the wire being tapped is a pure vector. In this case (only), the
tap wire label need not include a name, but only a vector expression. Also in this case, a connection is
required. Then, the tap wire will obtain the name from the wire being tapped.

For example, suppose that we have a net data[0:3], and we want to connect data[0] to a scalar
instance pin A. If we connect the A pin directly to the data[0:3] wire, all four bits of the wire would be
connected to A, which is not what we want. Instead, create a new wire, connected to the original wire
and to A. Give the new wire a label “[0]”. This becomes a tap wire, connecting data[0] to A.

4.2.12 Generating Output and Running Simulations

Once the device properties have been entered, the user can export the circuit for further analysis. The
deck command in the side menu can be used to produce a SPICE file of the current hierarchy. If the
WRspice program is accessible, the run command in the side menu can be used to initiate analysis. The
user will be prompted for a SPICE analysis string, and the simulation will run. A small window will
appear that will inform the user when the analysis is complete.

After WRspice analysis, circuit variables may be plotted. The plot command in the side menu allows
the user to click on circuit nodes to plot. After each click, the corresponding node is added to the
string shown on the prompt line. This string can be edited manually in the usual way, if necessary.
Pressing Enter will terminate the string, and the plot will be displayed on-screen. The iplot button
works similarly to the plot button, though the plot will be generated dynamically during simulation on
subsequent runs. Plotting is available only through the WRspice program.

Once properties have been entered, they are easy to alter without the use of the Properties com-
mand. The label button in the side menu is used primarily to add annotation to the drawing. However,
if a label is selected before pressing the label button, the existing label can be edited, rather than a
new label created. If the selected label is one of those created for a property, then that property can be
altered merely by editing the label. Thus, to change a property of a device, click on the label to select
it. Then, after pressing the label button, enter the new text. The circuit can then be re-simulated with
the altered parameters.

One feature of Xic is the use of hypertext. This is most evident when using the plot command.
When the user clicks on a circuit node, the name of that node is entered, in color, on the prompt line.
Note that when using the arrow keys to move the prompt text cursor across a node name, the cursor
widens to underline the name, and the name otherwise behaves as a single character. The name shown
is a link to the internal database, and has the property that if the node number assigned to that contact
point changes (it may, if the circuit is modified, as it is by default randomly assigned) the string will
automatically be updated to the new node number.

When creating a label, clicking on a connection point in the drawing, for example, will enter a
hypertext link to the node into the label. The label will always display the correct node number or name

4.3. CELL ORGANIZATION AND LIBRARIES 103

for the node. This is the means by which node labels should be added to the drawing.

The same feature can be used to set up specialized spice output. Suppose one wishes to use the save
command in SPICE. A “spicetext” label can be created, where the nodes to be included in the save
are inserted in the label by clicking on the drawing. When a SPICE file is produced, the contents of
the “spicetext” labels is added to the deck. The resulting save command will always save the clicked-on
nodes, whether of not the actual internally generated number changes.

The “spicetext” label is simply a label where the first word is “spicetext” or “spicetextN” where N
is an integer. These labels have the property that any text following the “spicetext” keyword is added
to the SPICE output verbatim. The optional integer that follows “spicetext” determines the order of
appearance of the lines, where no integer is equivalent to 0. This is the mechanism for placing arbitrary
text into the SPICE output.

This has been a brief introduction to the use of Xic in electrical mode. There are numerous commands
and features, and many of the commands mentioned have not been fully described. The easiest way to
learn Xic is to use it. After switching to electrical mode, press the Help button in the Help Menu.
Pressing any button will bring up a description of that command. Press Esc to exit help mode.

If a cell has both a physical layout and electrical schematic, there is provision for verifying consistency
of the two representations by performing layout vs. schematic (LVS) testing. This is one of the functions
which can be found in the Extract Menu, and the process is described in Chapter 16.

4.3 Cell Organization and Libraries
Xic provides several methods by which collections of cells can be organized.

e Xic makes use of a search path for file names given to Xic which do not have a directory path
prepended. A search path is a list of directories where Xic searches for a named file. If the file
name contains a full path, that path will be used to obtain the file. If a file name has a relative
path, Xic will look for the file relative to each of the directories in the search path. The search
path can be set in the technology file, or by setting the Path variable with the !set command. The
current path can be examined by entering “!set”, which pops up a list of the currently defined
variables, including Path. The directories are searched in left-to-right order.

e Xic accepts library files. These are text-mode files which contain references to cells and other
libraries, and may contain cell definitions. If a library file is “open”, cell names referenced or
defined in the library will be resolved through the library, before resolving through the search
path. The name of a cell reference in a library is the name by which the cell will be added to
Xic memory, which can be different from the name by which the cell is stored on disk. The fact
that a library can reference other libraries allows a hierarchy to be established for accessing cells,
independent of the search path.

The Libraries List button in the File Menu brings up a panel which lists the currently open
libraries, and provides command buttons for performing basic manipulations on libraries, including
opening/closing, viewing content, and opening cells.

e Cells contained in archive files can be randomly accessed from the file, thus these files can be used
for archival purposes. The Contents button in the panel brought up by the Files List button
in the Files Menu will display the cells contained in these files. The Contents button will also
list the contents of library files. Individual cells (and their subcells) can be opened for editing or
placement through this panel. Also, when giving a name to the Open command, or the place

104 CHAPTER 4. USING XIC

command in the side menu, one can give two names: the name of an archive file and a space-
separated name of a cell in the archive. That cell will be opened. If the cell name is not given, the
top-level cell in the archive is opened.

The strategy used to organize cells is highly dependent upon the user’s needs and preferences. Below
are some recommendations which are probably suitable for most applications.

e Keep the search path short. This can usually consist of two directories: the current directory (“.”)
listed first, and a root directory for the user’s design files. The search path is most conveniently
defined in the technology file, with the Path keyword. The search path has the disadvantage that
all components are visible at all times. If a cell name appears more than once in the search path,
only the first instance will be found, unless the full path is given. Libraries, on the other hand,
can be opened and closed easily, changing the accessibility of the contents.

e Use hierarchies of libraries rooted in the search path to organize cells. One can open only the
libraries in use, preventing loading of cells unexpectedly.

e Place collections of cells to be referenced through libraries in separate directories not in the search
path. Alternatively, the Xic cell definitions can be incorporated directly into the library file. The
cells can otherwise be kept as individual cells of any compatible format, or combined into a single
archive file.

Library files have a simple format which allows the user to easily create and customize them with a
text editor. There is a !Imklib command in Xic which can create a new library or append to an existing
library references to cells in the current editing hierarchy or cells in a given archive file.

If one clicks on a reference in a library content listing which points to another library, without a
resolving “cellname”, a second content window appears providing a listing of the second library’s refer-
ences. Thus, when constructing library files, one should use an easily recognizable name for browsable
references to other libraries. This is natural, if the file name is used as the reference name, and the
filename has a “.1ib” extension as is recommended.

4.4 Batch Mode

Xic has a batch mode of operation, where Xic will start without graphics, run commands, and exit.
Batch mode is signaled by giving the -B option in the command line, in one of the following forms:

-Bscriptfile],param1 =valuel][,param2=value?2]...
-B-command|@arguments)

In the first form, the path to a file containing Xic script statements immediately follows “-B” with
no space. The statements in the script file will be executed after the first input file is loaded. If no input
file is given on the command line, the script will be executed after the default “noname” cell is loaded.

It is possible to pass parameters to the batch-mode scripts from the command line. The comma is
used as a delimiter. Commas in the line that remain in single or double quotes after the shell has treated
the line are not taken as separators. The entire construct should not have any embedded white space,
except when single or double quoted as part of the values.

The paraml, param?2, etc. are the names of variables that will be defined in the execution context
of the script. These variables will be set to wvaluel, value2, etc. The values are numbers, strings, or

4.4. BATCH MODE 105

executable text. Values that contain white space must be quoted, but note that the shell will strip the
quote marks, so that a string constant should be single and double quoted as shown below.

Example

xic -Bmyscript,pl=1.234,p2=’""a string"’,p3="pl + 1"

This translates into the virtual addition of three lines to the beginning of the script:

pl = 1.234
p2 = "a string"
p3 =pl +1

In the second form, the “~B” is immediately followed by another ‘-’ and one of the command keywords
listed below. After the first cell is loaded (or “noname” if no input file was named in the command line)
the command will be executed. The recognized commands are listed below.

The command name can be immediately followed by an argument string that begins with the ‘@’
character. The arguments are specific to the command. Multiple arguments can be separated by ‘@
characters, or by white space if quoted.

The .xicstart file is read and executed (if it exists) before the first cell is loaded, and all other
initialization is performed in the normal sequence. The commands below are simple shortcuts to common
operations. If unavailable options are required, then these can either be set in a .xicinit or .xicstart
file, or the first form of the -B option should be used.

tocgx, tocif, togds, tooas, toxic
These write the hierarchy under the current cell to CGX, CIF, GDSII, OASIS, and native cell
files, respectively. They perform file conversion by reading a file into Xic, then writing it out in
the specified format. The FileTool utility and -F command line option provide a far more powerful
format translation capability.

The default name for the file written is the name of the current cell, suffixed with “.cgx”, “.cif”,

“.gds”, and “.oas” for the four archive file formats. Native cell files always have the same name
as the cell contained.

These commands can take the following options. The options are separated from the command
name and from one another by ‘@’ characters, and consist of a single character identifier, an optional
‘=" character, and a value.

o=outfile
The outfile is the name of the file to be generated. If not provided, the file name will be the
name of the top-level cell suffixed with an extension appropriate for the format. In the case
of toxic, the outfile is a path to a directory where the cell files will be created.

s=scale
The scale is a floating point value from 0.001 to 1000.0 which applied when the file is written.

1=+|-Inamel[, lname ...]
This option specifies a list of layer names. The first character in the list is a + or - to indicate
that only the listed layers will be output, or that all layers except the listed layers will be
output, respectively. Immediately following is a layer name, optionally followed by additional
layer names separated by commas.

106 CHAPTER 4. USING XIC

e[N]
The letter ‘e’ can be immediately followed by an integer 0-3. This sets the empty cell filtering
level, as described for the Format Conversion panel in 14.10. The values are

e or el Use both pre- and post-filtering.

e2 Use pre-filtering only.
e3 Use post-filtering only.
e0 No empty cell filtering (no operation).

This flag option indicates that the output will contain a flat representation of the cell hierarchy.
If the w option is given, only objects that overlap the window area will be present in output.
This option will not work with toxic.

w=Il,b,r,t
This specifies a rectangular area, in microns, for use when flattening.

c
This flag indicates that when flattening with a window (both f and w options also given)
objects will be clipped to the window boundary in output.

Example:

xic -B-togds@o=filel.gds@w=100,200,200,300Q@fc@1=+0600 myfile.gds

This will create filel.gds, containing objects on layer 0600 within the window area, flattened
and clipped. Note that the @ separation character is actually optional after flags, and other options
which are not lists or strings.

drc
Design rule checking is performed, and results are written to a log file.

There are optional arguments that can be provided, separated from the command name and from
each other with ‘@’ characters.

w=1,b,r,t
This provides an area, given in microns, of the top-level cell where checking will be performed.
The value consists of four comma-separated floating-point numbers. If not given, the entire
cell will be checked.

m=maxerrs
This provides the maximum batch-mode error count, checking will terminate when this count
is reached. The maxerrs is an integer 0-100000, with 0 indicating no limit. This will override
the maximum error count set in the technology file, if any.

r=level
This sets the error recording level to use when checking. The level is an integer 0-2. These
correspond to recording one error per object, one error of each type per object, or all errors.
This will override the recording level set in the technology file.

This a flag, not followed by an ‘=’ sign or value. If given, the file which was the source of the
current cell will be deleted from the disk when DRC completes. This facilitates cleaning up
temporary files, but obviously should be used with care.

In batch mode, the log files for reading and writing of files are written to the current directory.

4.5. SERVER MODE 107

4.5 Server Mode

Xic has the capability of operating as a daemon process, servicing requests for processing of design data.
This allows Xic to be used as a back-end for automation systems designed by the user or third parties.

To start Xic in server mode, the -S option is used, as
xic -S[port]

This causes Xic to start without graphics, go to the background, and listen to a system port for
requests. The port number used can be provided on the command line immediately following the “-S”.
If not given on the command line, the “xic/tcp” service is queried from the local host. This will come
up empty unless the “xic/tcp” service has been added to the host database, usually by adding a line
like the following to the /etc/services file:

xic 6115/tcp #Whiteley Research Inc.

where the port number 6115 is replaced by the desired port number. If there is no port assigned for
“xic/tcp”, port 6115 is used, as this is the TANA registered port number for this service.

If the XTNETDEBUG environment variable is defined when Xic is started in server mode, a debugging
mode is active. Xic will remain in the foreground, but will service requests while printing status messages
to the standard output. This may be useful for debugging. If the dumpmsg command is given, Xic will
print the text of messages received on the terminal screen, enclosed in ‘—’ symbols to delineate the text.
The command nodumpmsg can be given to turn off the message printing. This can be a useful feature
for debugging a client-side program which is communicating with Xic.

The user’s application should open a socket to this port for communications. Up to five channels can
be open simultaneously.

All transmission to the server is in ASCII string format, however replies are in a binary format, and
are likely to be invisible or gibberish in a text-mode connection such as telnet. However, the telnet
program can be used to connect to the Xic daemon, and can be used to give simple commands, such as
the kill command. After starting the daemon, one types

telnet hostname port

where hostname is the name of the machine running the daemon (one can use “localhost” if running
on the local machine). The port is the port number in use by the daemon.

An example file xclient.cc is available which provides a demonstration of how to interact with the
Xic daemon through a C/C++ program. This file can be found in the examples directory of the Xic
installation.

Communication can also be established through use of the example xclient.scr script, which illus-
trates use of script functions to implement a client within Xic.

While the server is working on a task, the server is sensitive to interrupts. An interrupt will cause
the server to abort the current task and begin listening for new instructions. The interrupt handling
works about the same as in graphical mode when the user types Ctrl-c, though there is no confirmation
prompt — the task is always aborted. There may be a short delay before the interrupt is recognized.

Interrupts can be sent to the server by sending an interrupt (“INT”) to the process number of the
server with the Unix kill command. The server socket will also raise an interrupt if out of band (OOB)

108 CHAPTER 4. USING XIC

data are received. Thus, the client can send a single arbitrary byte of OOB data to generate an interrupt.
The Unix manual pages describe the concept of OOB data.

The text expected by the daemon is in the form of statements which can be understood by the script
interpreter, i.e., script lines. In addition, there are a number of special control commands.

As more than one connection can exist at the same time, commands from one connection can dra-
matically alter the environment seen by the other connections, including clearing of data and killing
the server. Though the connections are separate, they should be considered as multiple windows into a
single processing environment rather than separate processing environments.

Generally, when the last connection closes, all data within the server will be cleared and its state
reinitialized, though this can be suppressed, allowing persistence of state and data.

The server may be used as a “geometry server”, providing compressed representations of the geometry
in cells, by layer, as from a Cell Geometry Digest (CGD). A connection object can be linked to a Cell
Hierarchy Digest (CHD), allowing operations with the CHD to obtain geometry through the server.
This would reduce memory use on the local machine, assuming that the geometry is stored on a remote
server.

The built-in non-script commands are described below. All other input should be parsable by the
script parser, except that lines that start with ‘#’ are not allowed, so no comments or preprocessor
directives are allowed.

All transmissions to the server are readable ASCII text, using standard network “\r\n” line termi-
nation. Replies from the server are in a binary form described below.

After each line of input is given, the server returns a message giving the data type and possibly the
data for each script command. Most script functions return some value. Assignments return the value
assigned. A variable name returns the value of that variable, if the variable has a known type. The
default mode is to return only the data type code, which minimizes the network overhead. Optionally,
the longform command can be applied, in which case the data are returned. Note that this can be
arbitrarily large for some data types.

close
This will close the connection to the daemon, and is the normal way to end a session. If no
other connections are open, the daemon will generally clear the database of all cells and otherwise
initialize itself to a clean state for the next connection (effectively calling reset and clear, see
below), though this can be suppressed with keepall (see below). The daemon will continue
listening for new connections.

kill
This will close the connection and cause the server to exit.

reset
This command will reset the script parser to its initial state, exiting from any control block in
effect and deleting any script variables that may have been defined previously. This will affect all
open connections.

clear
This will clear the server database of all cells, and delete any layers that were not initially read
from the technology file. This is equivalent to calling the ClearAll script function. This will affect
all open connections.

longform
After each line of script input is given and the line processed, a response message will be returned

4.5. SERVER MODE 109

based on the computed result from the line, if any. The user has a choice of receiving a very brief
reply, giving only the response code - an integer which indicates pass/fail and the type of computed
data, if any. The other choice is to actually return the data along with the response code. The
data can be arbitrarily large.

The default return is “shortform” which does not transmit the data values. Giving this command
switches to the mode where values are returned, for the present connection only.

shortform
When given, subsequent replies fro the present connection will use the short form for returned
data, which consists of only the data type code. This is the default.

dumpmsg
When given, the text of subsequently received messages from the present connection is printed,
surrounded by vertical bar (‘|’) symbols, on the standard output, meaning that the text will appear
in the daemon_out.log file in normal operation. If the server is running in debugging mode (the
XTNETDEBUG environment variable was found when the server started), this text will be printed
on the console window.

nodumpmsg
This turns off the printing of received messages if dumpmsg was given. It has no effect otherwise,
and applies only to the current connection.

dieonerror
Ordinarily, if the client crashes or there is a connection failure, the server will simply reset itself
and continue waiting for new connections and handling other existing connections. If dieonerror
was given, the server will instead exit on failure of the current connection.

nodieonerror
This will undo the effect of dieonerror, if dieonerror was given, and has no effect otherwise. It
applies only to the current connection.

keepall
Ordinarily, when the server receives a close command, and there are no other connections open,
the interpreter context is reset, the cell database is cleared, and other steps are taken to provide a
clean environment for the next connection. If this command is given, all of this will be skipped, so
that the same context and environment will be available to the next connection. This is a single
flag which can be set or reset from any connection, but applies to all connections.

nokeepall
This will undo the effect of keepall, if keepall was given, and has no effect otherwise. This can
be given from any connection, and applies to all connections.

geom [chd_name] [cellname]
The geom command implements the “geometry server”, and unlike the other built-in commands
this is an actual function and does not affect the interface state.

Information from Cell Geometry Digests saved in server memory is made available through this
interface. The OpenCellGeomDigest script function can be used to create CGDs in the server, and
of course the target layout file must be accessible to the server.

All of the arguments that follow “geom” are optional, though arguments to the left of a given
argument are required. Below are the accepted forms and returns. In all cases, the actual data are
returned, as with longform.

110 CHAPTER 4. USING XIC

geom
If no arguments are given, the reply is a space-separated string listing of CGD access names
found in the server. If an access name contains white space, it will be quoted.

geom 7 cgd_name
This form will return the string “y” if cgd_name is the access name of a CGD in memory, “n”
if not found.

geom cgd_name
The argument is taken as an access name of a CGD in server memory. The return is a string
containing space-separated cell names found in the indicated CGD.

geom cgd_name =7

geom cgd_name 7-

geom cgd_name -
The argument is taken as an access name of a CGD in server memory. The return is a string
containing space-separated cell names that have been removed from the CGD.

geom cgd_name ? cellname
This form will return the string “y” if cgd_name is the access name of a CGD in memory, and
cellname is found in that CGD. The string “n” is returned if the CHD access name matches
a CGD name, but the cellname is not found in that CGD. An empty string is returned
otherwise.

geom cgd_name - cellname
if the cgd_name and cellname match a CGD and cell, that cell will be removed from the
CGD, and resources freed. However, the cell name and its status as having been removed is
retained. This will return the string “y” if cgd_name is the access name of a CGD in memory,
and cellname is found in that CGD (and removed). The string “n” is returned if the CHD
access name matches a CGD name, but the cellname is not found in that CGD. An empty
string is returned otherwise.

geom cgd_name -7 cellname

geom cgd_name 7- cellname
These forms will return the string “y” if cgd_name is the access name of a CGD in memory,
and cellname has been removed from that CGD. The string “n” is returned if the CHD access
name matches a CGD name, but the cellname is not in the removed list for CGD. An empty
string is returned otherwise.

geom cgd_name cellname
If two arguments, they are taken as the CGD access name and a cell name in the indicated
CGD. The return is a string consisting of space-separated layer names of layers in the cell
that contain geometry.

geom cgd_name cellname 7 layername
This form will return the string “y” if cgd_name is the access name of a CGD in memory, and
cellname is found in that CGD, and layername the name of a layer found in that cell. The
string “n” is returned if the CHD access name matches, but either cellname or layername is
not found. An empty string is returned otherwise.

geom cgd_name cellname layername
With this form, the return value is the compressed string representing the geometry. These
data have a unique return class, described in the format documentation below.

The normal way to terminate a session with the server is to issue the close command. Unless
keepall is in effect, if there are no other open connections the server will be cleared and reinitialized.
The clearing and reinitialization is equivalent to giving the reset and clear commands, which can be

4.5. SERVER MODE 111

given at any time from any connection, and affects all connections. If the keepall command was in
effect, the server will not be reset and cleared before the connection is closed, thus its state will be
retained for the next connection. If there is a communications error, the server will exit if dieonerror
was in effect for the affected connection, otherwise the behavior will be the same as for a close operation.

There is quite a bit of internal server state that is not reset to any preset value between connections.
Examples are the mode (physical or electrical) and the status of variables set with the !set command
or Set function. Thus, when writing scripts for execution by the server, it is important to explicitly
initialize any such state or variable.

The ReadReply and ConvertReply script functions can be used the to handle server responses when
the client is implemented as a script. For other applications, the user will have to write a parser, perhaps
using the code from the xclient.cc example. Whiteley Research can provide assistance to users who
need to develop this capability.

4.5.1 The Response Message Format

Numeric data are sent in “network byte order” which means that the MSB arrives first. Integers are
always 32-bits, other numeric data are 64-bit IEEE floating point values. The raw bytes read for a
numeric value must be converted to the machine’s byte order before being processed in a program. For
integers, the ntohl C library function is usually available. For floating values, an example conversion
function is provided in the xclient.cc file. The byte order is the same as that used by Sun sparc
systems, thus this issue can be ignored on those systems, unless code portability is desired.

All response messages begin with a 4-byte integer, which may constitute the entire message in some
circumstances. This (and all numeric values) is in network byte order, so must be converted to host byte
order before processing. The first integer is the “response code” possibly ORed with the “longform”
flag. The response code is an integer 0-9, and the longform flag is hex value 80.

If the longform flag is not set, then no more data exists in the message. Otherwise, most response
codes will be followed by additional data. The possible responses are described below.

0
This is the server “ok” message. There is no additional data.
1
This is the server “more” message. There is no additional data. This response is given when the
server is waiting for input required to complete a script conditional block, for example:
command response
keepall 0
if (x) 1
end 0
2
This is the server “error” message. There is no additional data. This response is given if the
command produces an error.
3

This is the server “scalar” message. If the longform flag is set, there are 8 bytes of following data,
representing a double-precision IEEE floating-point value.

112 CHAPTER 4. USING XIC

This is the server “string” message. If the longform flag is set, a 4-byte size integer follows, in
turn followed by the string characters. The size value is the number of characters in the string and
includes the null termination character of ASCII strings.

This is the server “array” message. If the longform flag is set, a 4-byte integer follows, giving the
number of elements in the array. This is followed by the array data, 8 bytes per element, in IEEE
double-precision floating-point form.

This is the server “zlist” message. If the longform flag is set, a 4-byte integer follows, which gives
the number of trapezoids in the list. This is followed by the trapezoid list data, with 24 bytes per
trapezoid (six 4-byte integers each). The values are coordinates in the internal units (usually 1000
units per micron), in the order zll, zlr, yl, zul, zur, yu.

This is the server “lexpr” message, which is the return for the layer expression type. This is treated
as a string. If the longform flag is set, a 4-byte size integer follows, followed by the text of the
layer expression. The size includes the null termination character of the string.

This is the server “handle” message, which is the return for all handle types. This is basically
useless on the local machine, since the underlying data resides on the server. If the longform flag
is set, a 4-byte integer follows, which gives the handle identification value.

This is the server geometry stream message. This message always returns data, the longform flag
is ignored. The type 9 return is unique to the geometry stream response from the geom command.
The ASCII string responses from the geom command use type 4 in the normal way, though they
are always in “longform”. The type 9 record is very similar to a string, however the first 8 bytes
of the string contains two integers: the first integer is the compressed size of the following data,
and the second integer is the uncompressed size. The compressed size can be zero, in which case
compression is not used. The actual string length is the compressed size if nonzero, otherwise the
uncompressed size. The string contains OASIS geometry records, as in a CBLOCK if compressed.

The user will have to supply an OASIS reader to interpret the stream. Xic provides script functions
for this purpose.

4.5.2 Operation

Internal script variables are defined and set in accord with instructions received. The variables and other
context are cleared when an initial connection to the server is made or or final connection broken (and
keepall is not in effect), or when “reset” is given.

Other state, such as the current directory and cells in Xic memory, is persistent, thus users should
initialize Xic appropriately, and clear the database before closing the connection.

While in server mode (also in batch mode) the Xic functions that query the user for some decision
are not available. If the prompt line editor is invoked, it will return immediately as if the user hit
Enter. The return value is the default string, if any, or any text that was previously supplied with the
StuffText function. The Merge Control behavior is as if the NoAskOverwrite variable was set, i.e., the
overwriting behavior will be the default as set with the NoOverwritePhys and NoOverwriteElec variables.
If neither of these is set, the action will be to overwrite the cell in memory.

4.5. SERVER MODE 113

The server produces a log file directory in the same manner as under normal Xic operation. These
files are removed when the server exits normally, i.e., when a “kill” command is received. In server
mode, there are files used that are not used in normal mode:

daemon.log
This records connection activity to the daemon.

daemon_out.log
This records the “stdout” channel from the daemon, i.e., the text that would go to the console in
normal mode. Under Microsoft Windows, this file is not located with the other log files, but is
created in the parent directory of the directory containing the log files. This is due to a technical
issue in Windows.

daemon_err.log
This records the “stderr” channel from the daemon, i.e., the error text that would go to the console
in normal mode. Under Microsoft Windows, this file is not located with the other log files, but is
created in the parent directory of the directory containing the log files. This is due to a technical
issue in Windows.

114 CHAPTER 4. USING XIC

This page intentionally left blank.

Chapter 5

Parameterized Cells and Vias

5.1 Parameterized Cells

Parameterized cells, or “pcells” (or sometimes called “template cells”) are cells which in addition to
possible fixed geometry, contain an executable program that creates geometry according to one or more
parameters supplied to the cell. The cell is instantiated for given sets of parameters, so that instances
may have layouts that differ. Parameterized cells are often used to represent devices such as MOSFETS
that may come in many shapes and flavors. The MOSFET parameters select the size and other properties
of each instantiation. As an alternative, in a process design kit one might find hundreds of fixed-cells
with different permutations of size and other parameters. A single parameterized cell that replaces the
collection of fixed cells can streamline the design process, provide greater flexibility, and reduce errors.

The full and Xicll feature sets have support for native and OpenAccess-based portable pcells, as well
as the ability to work with the Cadence Virtuoso Express PCells” feature. The Xiv feature set, does
not support pcells.

There is an ongoing effort to strengthen the parameterized cell capabilities in Xic. The effort includes

e Providing support for languages other than the native script language. In particular, the Python
language appears to be the choice for “open” pcells, i.e., pcells which can be used in tools from
different vendors.

e Provide commonality and support for Ciranova open pcells and standards.

e Provide commonality and support for the OpenAccess pcell framework.

5.1.1 How PCells Work

Provided below are definitions of some terms used frequently in the discussion that follows.

pcell
A “parameterized cell” or “template cell”. This is a cell containing an executable component,
which acts on a set of one or more parameters. When placed in a layout, the cell constructs itself
according to the parameters given while instantiating.

115

116 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

super-master
A pcell in memory.

sub-master
A master cell created from a super-master and a given parameter set. Instances of the sub-master
are actually placed into the layout. A pcell itself is never placed in a layout.

All peells “work” as follows. The pcell is supplied as a cell file to the design system, which understands
the file syntax. Within the design system, an in-memory object called a “super-master” is created, which
is an in-memory representation of the pcell. This element contains a list of parameter names, and for
each parameter a default value and acceptable range. The element also provides, by some means, a
program or script that can be executed from the design system.

When a user wishes to place an instance of a pcell, the pcell is selected from a menu, which causes
the pcell file to be read from disk and a super-master created in memory. The user will then specify
the parameter values to the cell to instantiate. This is usually done with a pop-up form, where the user
can enter values for the various parameters, all of which have defaults. When this entry is complete, the
design system will execute the pcell script with the entered parameter values. The result will be creation
of a cell in memory containing geometry created by the script in accord with the parameters. This cell
is called a “sub-master”. It is a normal cell is every respect, though it has properties that link it to the
original pcell super-master. Instances of this sub-master are created where the user specifies. A separate
sub-master will be created for every differing parameter set that the user provides. Each instance of a
sub-master contains properties that contain the parameter set used for instantiation, and the name of
the original pcell.

A design containing pcells can be saved in two ways. For a local save, for use in the same design
environment, the super- and sub-masters in memory are discarded (or the sub-masters may be cached).
When the design is read in again, the instances provide the location of the pcell and the parameter set,
which are used to recreate the sub-masters. If instead the design is being sent to another environment,
one which perhaps does not handle the pcells, the sub-masters can be written to disk as ordinary cells.
The resulting hierarchy will be normal and portable. In Xic, sub-masters can be included in saved archive
files when the PCellKeepSubMasters variable or equivalently the check box in the Export Control
panel is set, or when the StripForExport variable or equivalent check box in the same panel is set. If a
cell is read from a file and is recognized as a pcell sub-master, the PCKEEP cell flag will be set. This
will cause the cell to be written to output, whether or not writing of pcell sub-masters is enabled.

5.1.2 PCell History and Status

Historically, the pcell concept was developed for the Cadence Virtuoso layout editor, and supported
peells used the Skill”™ language which is the scripting language of the Virtuoso system. This remains
the dominant type of pcell around, due to the ubiquity of Cadence installations. However, the Skill
language is not available outside of the Cadence environment, so these pcells are not portable to other
tools.

The OpenAccess project addressed the pcell portability problem by providing a standardized interface
for pcells, with the execution being carried out through a “plug-in” that a vendor, or user, may supply.
A pcell, in concept, can be created to use any suitable programming language, provided that the tool
used to instantiate the pcell is capable of executing that language. With OpenAccess, the portability
problem is reduced to obtaining a plug-in for the pcell language.

There are example plug-ins distributed with OpenAccess that handle Tcl and C++. Unfortunately,
the Skill language is not available for general use outside of the Cadence environment. It is not really at-

5.1. PARAMETERIZED CELLS 117

tractive anyway, as it was developed back in the prehistoric days when Lisp ws “cool”, and abominations
like EDIF seemed important. There are far better languages, such as Python, available today.

The concept of portable pcells was championed by a company called Ciranova, that supplied an
OpenAccess plug-in for Python. They released this, along with companion applications for Python
peell (“PyCell”) development, examples, and precompiled OpenAccess and Python libraries as a free
“PyCell Studio” download. Ciranova was subsequently bought by Synopsys, but the PyCell Stu-
dio remains available and apparently is still under development. An industry group, IPLnow.com
(http://www.iplnow.com) which includes TSMC and other foundries and some tool vendors, is pushing
the cause of “interoperable” PDK libraries based on portable pcells.

Xic is intended to be fully compatible with the PyCell Studio and PyCells, through the OpenAccess
interface plug-in. In addition, Xic without OpenAccess provides support for Python pcells, and the
Ciranova protocols for stretch handles and abutment. However, Ciranova provides a number of library
modules and functions as part of its Python implementation that are not present without the Ciranova
plug-in and OpenAccess.

Xic with OpenAccess has some limited capability with Skill-based pcells through the Virtuoso Express
PCells feature. This allows export is pre-instantiated cached sub-masters of pcells, but not the pcells
themselves. This capability is provided through the same OpenAccess plug-in technology mentioned
above, but in this case if the parameter set does not have a pre-built sub-master in cache, the instantiation
will fail.

The !rmpcprops command will remove the properties that make pcells special throughout the
hierarchy of the current cell. This operation is not undoable, and renders the hierarchy henceforth free
of any pcell history. The user may wish to do this to hierarchies imported from Virtuoso, as the Skill
pcells can not be evaluated in the Xic environment. In this case, retaining the pcell identities may be
pointless, and in fact this may cause trouble, for example when writing output pcell sub-masters are not
written unless the user overrides the default (e.g., by checking the box in the Export Control panel).

5.1.3 Xic Native PCells

Xic supports pcells using the native scripting language, plus Python or Tcl if the respective plug-ins
are loaded. Parameterized cells are supported only in physical mode. This section will describe how to
create and use native pcells in Xic. By “native”, execution within Xic rather than through OpenAccess
is meant. As will be seen, native pcells can be saved in OpenAccess, too, and they are still native.

There are several example native pcells provided in the examples directory of the Xic installation.
These provide samples of the syntax used in the property strings and other aspects, with comments, and
their study should facilitate understanding how to write native pcells.

A native pcell can be saved in any format supported by Xic, with certain limitations to be described.
Probably, the native cell format is the most convenient. These can be easily edited with a text editor,
which the advanced developer is likely to do on occasion.

A pcell can have any name that is compatible with Xic. Earlier releases of Xic required that a pcell
name have a literal “XXX” suffix. This is no longer the case, but if the XXX is present, it will be stripped
in sub-master names and replaced with a unique identifying code for the parameter set. Otherwise, the
code is appended to the pcell name.

Super- and sub-master cells, and sub-master instances, differ from normal cells and instances by the
presence of a few special properties. These are:

pc_name property, number 7197

118 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

This property is assigned by Xic to pcell sub-masters and their instances. It provides the name of
the pcell from which the sub-master or instance was derived.

pc_params property, number 7198
This property is assigned by the user to pcells, and contains the default parameter set. It will be
assigned by Xic to sub-masters and instances, and contains the parameter set that was used to
create the sub-master.

The string of the pc_params property has the form
[typechar:|name[=|valuel: constraint] [[,] ...]

The string consists of a series of name and value tokens. The names can not contain white space
or punctuation. Ahead of the name is a type specification character if the value is not string type.
In native pcells, all parameters are (for this purpose) string type, so the type specifier will never
appear. However, the syntax used may be extended in future, so it is documented in the table
below. All types except for string type will have a specifier. These will appear in property strings
obtained from OpenAccess for non-native pcells.

b boolean
i integer
t time value
f 32-bit float
d 64-bit float

Each of the name tokens is the name of a parameter that can be applied to the pcell. These will
become names of variables in the script, so that these names should not be defined or used in the
script text in a conflicting way.

Every name should have a value, an “empty” value is specified as an empty string (""). The value
is separated from the name by white space, a comma, or an equal sign. The values are taken as
default values for the parameters, and can be numeric values or strings. A wvalue that contains
white space, commas, or colons should be quoted. The value string can also be an executable code
fragment using only parameters already defined (to the left) and constants, for example

paraml=2,param2="paraml + 1"

This form, however, can not be used with constraints (see below). It can also only appear in
super-master pc_params properties. the pc_params strings of sub-masters and instances must have
constant values.

The quoting behavior is a bit complicated, so as to support Python and native languages. If
the value is quoted with double-quote marks, the double quote marks will be stripped, and the
parameter will take the enclosed characters. However, if a backslash character (*\’) appears ahead
of the first double quote, the double quote marks will be retained. In the native language, this will
ensure that the parameter is string-type.

For example
myvar="123"

The parameter (variable) myvar will be assigned the value 123, causing it to become scalar-type.
On the other hand

myvar=\"123"

5.1.

PARAMETERIZED CELLS 119

will assign "123" to myvar (including the quotes) thus myvar will be string-type. In general, if
the value is to be taken as a string constant in the native language, a backslash should be placed
ahead of the first double quote mark.

If the value is quoted with single-quote marks, the single-quote marks are retained, along with
the characters between them. This is for Python support. However, if the second character is a
double-quote mark, the single-quote marks will be stripped, leaving the double-quoted result. This
is an alternative and somewhat deprecated way to specify a string constant in the native language.

mystring=’"a string constant"’

In any case, when the parser is searching for the ending quote mark (single or double), if the mark
is found but it is preceded by a backslash, both characters are taken verbatim and the search
continues. Thus, the backslash can be used to hide quote marks of the same type in the string.

If the value is a constant (not an executable fragment), the value can be followed by an optional
constraint specification, separated from the wvalue by a colon (no white space is allowed around
the colon). Constraints define the scceptable values for the parameter, using a syntax described in
5.2. The constraints appear only in pc_params properties of super-masters, and are not copied to
pc_params properties of sub-masters and instances.

The parameter string is logically converted to a series of assignment statements which are executed
before the script. For example, the parameter string

paraml=1.0,name=\"my template",param2="paraml * 2"
would map to the following logical script lines

paraml = 1.0
name = "my template"
param2 = paraml * 2

pc_script property, number 7199

This property is assigned by the user to a pcell, and appears only in the super-master. It contains
the script, or a path to a script, which is executed when the pcell is instantiated.

The pc_script property text is in the form
[QLANG langtok] @READ path [@MD5 digest] | script text

The @LANG, GREAD, and @MD5 tokens are literal. The langtok may be one of (case insensitive)

nfative] native sript, the default
plython] python script
t[cl] tel seript

The path token must appear if @READ is given. If @READ is not given, any remaining text is taken
as literal executable script text.

The path is to a file containing the executable text, and should be quoted if it contains white space.
If the path is not rooted, it will be searched for in a directory search path set in the PCellScriptPath
variable.

When a path is given, one can also apply the @MD5 digest clause. The digest is that for the script
file, and can be obtained from the !md5 command, or the Md5Digest script function, or from the
command

openssl dgst -md5 filepath

120 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

on most Linux systems. If given, the script file digest must match the digest given, or the script
will not be executed. This will ensure that only the “correct” script file is used.

Previous versions of Xic required that the script actually appear in the pc_script property string. This
can still be done, and may be convenient for many pcells, particularly very simple ones. However, one
may encounter a portability issue caused by string length limitations of the GDSII and CGX formats
due to their maximum record length of 64KB. The native cell format, the CIF format as extended by
Whiteley Research, and the OASIS format have no built-in string length limit, nor does OpenAccess.

When using separate script files, for portability it may be best to not provide a full path to the
script in the pc_script property string, but give the file name only and use the search path variable.
Then, the scripts can be kept in different locations at different Xic installations, and pcells will still be
portable provided the PCellScriptPath is set (probably from an initialization file). The MD5 digest keying
can ensure that the script file found via the search path is correct, or it will not execute.

The script, whether in a separate file or not, is basically conventional, and uses the native object
creation functions to build up the geometry, presumably using the parameter values as input. The
example native pcells provided with the Xic distributions in the examples directory illustrate how the
script is incorporated.

One aspect of importance is the script return value, which will tell the calling program whether or
not script evaluation succeeded. If evaluation fails, Xic can gracefully “clean up” by destroying partially
completed sub-masters, and any corresponding instance placements, and alerting the user to the error.

The script should return 0 (zero) on success, which is the default if no explicit return value is specified.
Any nonzero return value indicates faliure. The mechanics of setting the return value differs between
the supported languages, and is described below. In every case, just before a nonzero value is returned,
the AddError function should be called with a message explaining the error.

Native
The return keyword, followed by a value, will terminate the scrpt and return the value. For
example, here is a snippet that checks the value of a parameter named “top” and fails if it is out
of range:

if (top < 1 | top > 20)
AddError ("Parameter top is out of range [1 - 20].")
return 1

end

Actually, if the value following return is omitted, the return value is 1, so just a bare “return” will
signal the error condition. If the end of execution is reached and no return keyword is encountered,
the value returned is 0 (success). If the script is terminated with the Halt or Exit functions, the
return value is 0. If the script is halted by an internal error, the return value is -1. If the script is
halted due to an interrupt signal, the return value is 1.

Python
The recommended way to induce an error exit in a Python script is to call “sys.exit” with a
nonzero argument. The example above translated to Python will read:

if (top < 1 or top > 20):
xic.AddError ("Parameter top is out of range [1 - 20].")
sys.exit (1)

Errors detected by the Python interpreter are passed back as nonzero exit returns.

5.1. PARAMETERIZED CELLS 121

Tel
The recommended way to induce an error exit from a Tcl script is to call “return -code error”.
The example above translated to Tcl will read:

if {$top < 1 || $top > 20} {
AddError {"Parameter top is out of range [1 - 20]."}
return -code error

}

Errors detected by the Tcl interpreter are passed back as nonzero exit returns.

To summarize, a pcell is never itself instantiated. When one places an instance of a pcell, the following
steps occur:

1. The pcell is read into memory as a “super-master” if it is not already there.
2. The user enters the parameter values.

3. The database is searched for another cell derived from the same pcell with the same parameter
values, i.e., an equivalent sub-master. If one is found, a new instance is created and given pc_name
and pc_params properties copied from the sub-master, and we’re done.

4. Otherwise, the script is executed, in the context of a new, empty cell whose name consists of
the pcell name suffixed by a unique identifier. This is the sub-master cell. It is given a pc_name
property to identify the pcell, and a pc_params property to list the parameters used. The new
sub-master is instantiated and the instance given the same two properties, and we’re done.

Once the instance is placed, it behaves in all respects as a normal cell. It has a “master” derived from
the pcell as a sub-master, and a unique sub-master exists for each unique parameter set. Writing the
hierarchy, including the sub-masters, to an archive produces a perfectly normal file. However, by default
the sub-masters are not written to output, instead they are expected to be recreated from the pcell when
needed. The pcells (super-masters) are never included in the output file, since they are not directly
instantiated in the hierarchy. Thus, when exporting, the pcell should be supplied separately, if needed.
If sub-masters are included in the archive, then the pcell is not needed, unless further parameter changes
are required. In Xic, sub-masters can be included in saved archive files when the PCellKeepSubMasters
variable or equivalently the check box in the Export Control panel is set, or when the StripForExport
variable or equivalent check box in the same panel is set.

5.1.4 Creation of a Native Parameterized Cell

To create a native pcell, one can follow this procedure:

Write the script
Write a script that creates the geometry desired, in response to a set of variables that will become
the parameters. The script can be authored as any other script. It should be thoroughly debugged
before committing it to a parameterized cell.

It is recommended that the top of the script contain a comment listing the parameters and their
purposes, and explicit tests of the values that will abort the script (returning nonzero) if a value
is out of range or otherwise not acceptable. Any nonzero return should have a call to AddError
explaining the error. This text will be included in the system error reporting.

122 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

Create the parameterized cell
Use the Open (File menu) command to edit a new cell which will become the pcell. Add any
fixed geometry to the cell that is necessary. This can be done at any time. Keep this cell as the
current cell and add the properties listed below.

Add the pc_script property
Bring up the Cell Property Editor (Edit Menu). Press Add, which brings up a pop-up menu,
and select pc_script in the pop-up menu. This will prompt for the property string on the prompt
line.

At this point we need to decide whether to incorporate the script into the property string itself,
or to keep the script in a separate file. One consideration is that GDSII and CGX files have 16-bit
record lengths, which will limit the lengths of property strings. In the present Xic release, CIF and
native string lengths, and OASIS string lengths, are unlimited. There is also no limit when storing
the cell in OpenAccess.

First, assume that the script is to be stored in the property string. We will use the “long text”
feature to facilitate entering the script.

Enter property text with script
Press the “L” button to the left of the prompt line. This brings up the Text Editor pop-up. If
the script text is Python or Tcl, a @LANG specification must appear first. Type one of the following
into the editor window. For Python

O@LANG Python
or if Tcl
@LANG Tcl

Neither is needed for native script language.

The next step is to import the script text. This is presumed to exist in a file, though for very simple
scripts an advanced user can type it in. For the script in a file, one can use the Read button of
the text editor (in the File menu) to read in the script file. Then perform any last minute editing,
such as removal of the variable declarations that would be redundant with the parameters.

Press the Save button in the File menu of the text editor. The text editor will disappear, and
the script will have been saved in the pc_script property of the current cell.

Enter property text without script
One can use the “long text” text editor feature, or simply type into the prompt line. Without the
script, there generally isn’t much to type.

First, if the script text is Python or Tcl, one must enter a @LANG specifier as explained above. If
needed, just type in the two tokens. Next, enter a @READ directive in the form

QREAD path

where path is a path to the file containing the script. This can be an absolute path, however it
may be more convenient to just specify the file name, and set the PCellScriptPath variable to a
directory where pcell script files are kept. Then, the location can change without one having to
edit the property string. This completes text entry. Exit the text editor as above if it is being
used, or press Enter to terminate text entry into the prompt line. The text is saved in the pc_script
property of the current cell.

Optionally, one can append a directive of the form

@MD5 digest

5.1. PARAMETERIZED CELLS 123

The digest is the 32-character string obtained from the !md5 command for the script file. When
included, the script will not execute unless the script file has a matching MD5 digest, which ensures
that the script file accessed is the correct one and hasn’t been modified.

Add a pc_params property
Next, we program the pcell’s parameters and default values by adding a pc_params property. In the
Cell Property Editor (Edit Menu), press Add, then select pc_params in the pop-up menu.

Again, one can use the “long text” editor, or type directly into the prompt line. For long parameter
lists, the editor would be preferred. Enter the parameter list in the format described for this
property string (see 5.1.3). If using the editor, any combination of multiple lines and/or multiple
specifications per line can be used. A parameter specification consists of a parameter name followed
by ‘=" and its value, optionally followed by a colon and a constraint string (see 5.2). There must
be no white space around the colon that delimits the constraint string, but the constraint string
itself may contain white space, which is ignored.

Save the text if using the text editor, or press Enter if using the prompt line, when done.

Add additional properties
There are other properties that may be required, to support stretch handles (draggable edges, see
5.4) and auto-abutment (see 5.5) protocols. Text is added as for the properties we’ve described.
This may be a second pass, after getting the basic cell working.

Save the current cell to disk, the native format is probably most convenient. Congratulations, you
have yourself a pcell!

5.1.5 Adding an Instance of a Parameterized Cell

Adding a pcell to the current layout is the same procedure, whether the pcell is native, or not. One
adds an instance of a pcell like one would add an instance of any other cell. If a native pcell, the cell
file name can be given to the New text entry pop-up of the Cell Placement Control panel brought
up with the place button in the side menu.

Pcells saved in OpenAccess can be instantiated with the Place button in the Contents listing
window from the OpenAccess Libraries pop-up from the File Menu. These cells are also available
through the Cell Placement Control panel. In the text input pop-up from the New button, enter
the OpenAccess library name that contains the desired pcell, followed by space, then the pcell name.

When cell placement becomes active, by pressing the Place button the Cell Placement Control
panel, the Parameters pop-up appears. This pop-up displays a text entry area for every parameter,
loaded with the default value. The user can enter the values desired.

In addition, a double-line box is ghost-drawn and attached to the mouse pointer. This figure does
not represent the actual size of the instance, in fact it illustrates that the instance size is unknown. The
instance size will not be known until the parameter set is used to create or identify the corresponding
sub-master cell. This will happen when the user clicks in the drawing window to place an instance.
Better, the Apply button in the Parameters pop-up can be pressed, which will create a sub-master
without instance placement. The box attached to the mouse pointer will now be formed with a single
line, and will have the actual size.

As with a normal cell, instances are placed where the user clicks. Note that the Parameters pop-
up remains visible while instances are being placed. The parameters can be changed, and the Apply
button pressed, to change the type of instantiation to be subsequently placed. Note that the subsequent

124 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

instances will use the new parameter values, pressing Apply merely updates the bounding box attached
to the mouse pointer.

5.1.6 Changing the Parameters of an Instance

Once a pcell has been instantiated, the instance can be changed to represent a new set of parameter
values if the pcell is available. Thus, when a design is exported to another site that may wish to modify
the cell parameters, the pcells must be exported as well. The pcells are not automatically added to
GDHSII files or the other file formats. They can be supplied as Xic cells, in addition to the GDSII or other
output. Further, Xic native pcells are not directly portable to other design systems, they are known to
Xic only.

One possible way to maintain native pcells is to place them in a library.

Assuming that the pcell is available, one can change the parameters of an existing pcell instance with
the following procedure. First, select the pcell instance to modify. Then, while holding down the Ctrl
key, click on the selected pcell. The Parameters panel will appear. One can now change parameter
values as needed, and press Apply to reparameterize the instance.

Less conveniently, the pc_params property can be edited with the Property Editor with the same
effect. Bring up the Property Editor with the Properties button in the Edit Menu. With the
editor active, click on a pcell instance. The instance will be marked, and its properties listed. Among
the listed properties will be the pc_params. Click on this entry in the listing window, the text will show
as selected. Then, press the Edit button in the Property Editor, which will bring up our old friend
the Parameters panel. Adjust the parameters, then press Apply. The new parameter set will be
applied to the marked instance.

5.1.7 Changing the Parameters of a Sub-Master

One can change all of the instances that use a particular parameter set to a new parameter set by
changing the parameters of the sub-master cell of the instances. The original pcell must be accessible,
as for changing individual instances. The procedure is to edit the parameters of a sub-master, which
will have the effect of reparameterizing all of its instances.

A quick way to do this is to select an instance of the sub-master to be edited, and press the Push
button in the Cells Menu. The editing context will be pushed to the sub-master. The sub-master can
also be selected for editing from the Cells Listing pop-up (Cells Menu), or by giving its name in the
Open command (File menu).

With the sub-master as the current cell, bring up the Cell Property Editor with the Cell Prop-
erties button in the Edit Menu. The listing of properties will include a line for the pc_params property.
Select the property by clicking on it, then press the Edit button. Again, the Parameters pop-up will
appear. One should modify the parameters desired, then press Apply. The new parameter set will then
apply to the instance pushed into, and all other instances of the same sub-master. Use the Pop button
in the Cells Menu to return to the original editing context if Push was used.

5.2 Parameter Constraints

Constraints are described by text strings included in the pc_params property contained in the super-
master cell. Constraints do not appear in the sub-master or instance properties. Constraint support

5.2. PARAMETER CONSTRAINTS 125

is also provided for Ciranove/Python OpenAccess pcells, though the constraint strings are provided by
another method internally as there are no corresponding super-master Xic cells.

In Xic, constraints are mainly handled in the Parameters panel (see 5.3), which is where parameter
setting is primarily handled. The constraints may affect the type of input widget for the parameter. It
will not be possible to set a value for the parameter that is not allowed by the associated constraint.

The constraint strings follow closely the Ciranova format. Each is in the form of a Python function
call, with a set of arguments that define the constraint. The arguments can be either positional or
named. For example, the range constraint has the following template:

range (low,high,resolution=None,action=REJECT)

The two final arguments have defaults, and are therefor optional. Arguments can be given position-
ally, or as an assignment using the argument name keyword. The following forms are equivalent:

range(0,10)
range (high=10,1low=0)

The first line follows the argument order of the template. The second line does not, but supplies the
argument name explicitly. Arguments can appear in any order if the name is given. An argument list
can use both positional and explicit assignment. Note that the resolution and action arguments are not
given in either example, so that the defaults will be used.

All keywords are case-insensitive.

Each constraint type contains an action argument, which can be set to one of the literal enumerators
REJECT, ACCEPT, or USE_DEFAULT. This specifies what happens when an attempt is made to set the
parameter to a value not allowed by the constraint. The REJECT option (the default) will simply fail,
causing the command that initiated the operation to also fail. The ACCEPT action will accept the new
parameter value, basically ignoring the constraint. The USE_DEFAULT option is intended to reset the
parameter to the default value when the constraint test fails, but this is not implemented in Xic, REJECT
will be done instead.

The enumeration value None can be given to most arguments. This usually means to ignore the
argument, and skip any test that would use the argument. For example, a range constraint may give a
high value of None, meaning that the parameter value can be arbitrarily large.

The available constraint types are as follows.

choice
The choice constraint restricts the parameter to a number of alternatives. These alterna-
tives can be numbers or strings, as appropriate for the parameter data type. The keyword
“choiceConstraint” is a (case-insensitive) synonym. The template is

choice (choices,action=REJECT)
where the choices argument is a list in the form
[element,element...]

The square brackets are literal, elements are numbers or strings (single or double-quoted) which
are separated by commas.

126 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

Examples:
choice([1,2,4,8])
choice(["red","green","blue"])

The first line restricts the numeric parameter to the values listed. The second line would restrict
a string parameter to the strings listed. Note that if the script is Python, single quotes must be
used instead of double quotes. Single or double quotes can be used with native scripts.

range
The ramge constraint restricts a numerical parameter to a range of values. The keyword “rangeConstraint”
(case-insensitive) is a synonym. The template is

range (low,high,resolution=None,action=REJECT)

The low and high are numerical endpoints of the range. Either can be the enumeration value None,
which skips testing against that endpoint. For example,

range (0,None)

simply indicates that the value must be zero or larger.

The numerical values passed for low and high must be consistent with the language used for the
script. In particular, Python requires a standard integer or floating-point format. The native
language allows SPICE-type numbers (e.g., 1.2K), hex numbers with a “0x” prefix (e.g., 0x££00)
and character constants (e.g., ’\n’) in addition.

The resolution argument is used in the Parameters panel to set the number of digits to include
following a decimal point (see 5.3).

step
The step constraint limits the numerical parameter value to multiples of a given delta between a
starting and ending value. The keyword “stepConstraint” (case-insensitive) is a synonym. The
template is

step (step,start=0,limit=None,resolution=None,action=REJECT)

The parameter must be numeric. If the step value is 0 or None, the constraint acts the same as the
range constraint, with start and limit providing the low and high values, respectively.

Otherwise, the allowed values are given by
start + Nxstep

where N is a non-negative integer, and the value of the expression is within the range terminated
by limit, if limit is not None. Note that step can be negative, in which case the parameter value
must be greater than or equal to limit.

The resolution is treated as in the range constraint.

numericStep
This is very much like the step constraint, but is intended for use with string variables used for
numeric input to support SPICE-like multipliers. This is needed for script languages that don’t
handle numbers in this format. Since the native script language understands this number format
directly, it is not clear that the numericStep constraint will ever be needed in pcells with native
scripts. The keyword “numericStepConstraint” is a synonym. The template is

step (step,start=0,limit=None,resolution=None,scale Factor="u’ ,action=REJECT)

5.3. PARAMETERS PANEL: SET PCELL PARAMETERS 127

The arguments are the same as for the step constraint, with the addition of scaleFactor. The
scaleFactor is a string set to one of the scaling suffixes from the table below:

suffix | multiplier ‘ name ‘

a le-18 atto
£ le-15 femto
p le-12 pico
n le-9 nano
u le-6 micro
m le-3 milli
mil 25.4 mil

k le3 kilo
meg le6 mega
g 1e9 giga
t lel2 tera

The scale fastor is case-insensitive. If the scaleFactor is assigned the value None, no scale fastor
is assumed, and the constraint is basically identical to step. If a scale factor is given, numbers
given for step, start, and limit are internally multiplied by the scale factor, before comparison to
the parameter value.

5.3 Parameters Panel: Set PCell Parameters

The Parameters panel appears when it is necessary to provide parameters for a parameterized cell
(pcell) instantiation. These situations include

e During placement of pcell instances with the Cell Placement Control panel from the place
button in the side menu.

e While editing a pc_params instance property with the Property Editor, which is obtained with
the Properties button in the Edit Menu.

e If the user clicks with button 1 and the Ctrl key held on a selected pcell instance, The Parameters
panel will appear. The user can reparameterize the instance.

e While editing the pc_params property of the current cell with the Cell Property Editor, which
is obtained with the Cell Properties button in the Edit Menu.

e If one opens a non-native pcell for editing, the Parameters panel will appear. In this case, the
label on the leftmost button is “Open” rather than “Apply”. Entering parameters then pressing
Open will create or find the sub-master for the parameter set, and make it the current cell. This
will not happen with native pcells, which can be edited directly in Xic.

The Parameters panel provides an entry area for each pcell parameter. In cases where there more
parameters than will fit within the window, a scroll bar will appear, allowing the user to scroll the
parameter listing. The listing order of the parameters is as provided by the pcell.

The type of entry widget shown in the panel depends on the data type of the parameter, and the
parameter constraint specification. The constraint string, if any, is obtained from the pc_params property
of the pcell super-master. The following logic is used:

128 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

e If the parameter is boolean, any constraint is ignored, and a check box is created.

e If the parameter has a choice constraint, a drop-down menu containing the given choices is created.
The choices can be numeric or string values.

o If the parameter has a range or step constraint, a numeric entry “spin” button is created. The
numbers displayed in the text area follow the constraint, i.e., the range is limited, and the step value
(if any) is enforced. The up/down arrows add or subtract a step value. Further, the floating-point
precision used for the number will follow the resolution value of the constraint. This is described
below.

e If the parameter has a numericStep constraint, the set-up is very similar to the step constraint,
but an additional label will appear showing the scaleFactor, if any. This scale factor is logically
appeaded to the number that appears in the entry area.

e If there is no constraint, a simple text-entry area is created.

For numeric entries, the constraint resolution value will set the number of digits that follow the
decimal point in the display. For the default value of None, or if less than 1.0, the number of digits
will be based on the current database resolution, as set at program startup with the DatabaseResolution
variable. If the resolution is the default value of 1000, three digits will be used (1.235), otherwise four
(1.2345).

Otherwise, the number of digits following the decimal will be set by the following logic:

if (resol > 1e5) num = 6
else if (resol > le4) num =
else if (resol > 1e3) num =
else if (resol > 1e2) num =
else if (resol > lel) num =
else if (resol > 1e0) num =
else num = 0

=N W o

Note that giving a resolution of 1.0 will set the number of digits to zero, indicating integer values
only (no decimal point is shown in this case).

The panel logic differs somewhat depending on the context. When editing an existing property, with
the Property Editor or Cell Property Editor, the Parameters panel is “modal”, meaning that the
rest of Xic is inactive while the panel is visible. The user is expected to enter the appropriate parameter
data and either press Apply which will accept the new parameter set, or Dismiss, which will abort
the current parameter edit. In both cases, the Parameters panel will disappear, and Xic will return to
normal status. The Reset button will revert all parameter settings in the panel to the initial settings
when the panel was created, i.e., the values from the existing property string.

When placing instances, on the other hand, the Parameters panel is not modal. The parameters
can be changed at any time, and the changed parameter set will apply when new instances are created,
whether or not Apply is pressed. Pressing Apply will create or find the existing sub-master for the
parameter set, from which the instance bounding box is obtained and used in the ghost-highlighting
during instance creation. The Dismiss button will remove the panel, but the instance placement will
continue. The Reset button will reset all parameter values displayed in the panel to the defaults provided
in the pcell.

When opening a foreign pcell, the Parameters panel is non-model, and nothing happens unless/until
Open is pressed. Pressing Open will create a new sub-master if necessary for the parameters as set,

5.4. PCELL STRETCH HANDLES 129

and make the sub-master the current cell for editing. Editing the sub-master is generally not a great
idea, unless the user understands the issues. Changing the pc_params property, though, is a valid way to
modify all instances of the master. Other changes to the sub-master will be lost, unless the sub-master
is saved, possibly with the PCellKeepSubMasters variable set. Pressing Dismiss simply retires the panel.
Pressing Reset returns all parameter values shown in the panel to the pcell default values.

5.4 PCell Stretch Handles

Xic supports the protocol for stretch handles defined by Ciranova. This provides support for stretch
handles defined in PyCells, but also allows use of stretch handles in native pcells.

A stretch handle is a graphical item that can be moved with the mouse pointer, where the motion
causes a change in a parameter value. Usually, the object is associated with a parameterized cell
instantiation, and motion causes remastering of the instance to a new sub-master created with the new
parameter. For example, stretch handles might be used to graphically change the gate length and width
of a MOSFET pcell instance, if the corresponding pcell supports the protocol.

Stretch handles are visible and activated only when the containing instance is shown large enough
on-screen, to avoid false-triggering. The size threshold can be set from the PCell Control panel from
the Edit Menu, or equivalently with the PCellGriplnstSize variable.

In Xic, when editing a sub-master containing stretch handles, the handles are visible as well, and
can be moved. This will change the parameterization of the sub-master, and all of its instances. This is
equivalent to modifying the pc_params property with the Cell Property Editor from the Edit Menu.

If the Hide and disable stretch handles check box in the PCell Control panel from the Edit
Menu is checked, or equivalently if the PCellHideGrips variable is set, all stretch handles will be invisible
and disabled.

Adding stretch handles to a pcell amounts to adding box objects with the grip property applied. The
grip property provides the setup information.

There are example capacitor pcells that use stretch handles that can be found in the examples
directory of the Xic program distribution area. These demonstrate use of stretch handles and illustrate
the property syntax.

grip property, number 7195
This property is very similar to the Ciranova pycStretch property, used to implement stretch
handles. The property has meaning when applied to physical-mode boxes only. The property
string has the following format:

name:val; stretchType:wal, direction:wval, parameter:wval, minVal:wval, maxVal:wal,
location:wval, userScale:wal, userSnap:val, key:val

The terms have precisely the same names and interpretation as the pycStretch property described
in the Ciranova PyCell EDA Tool Integration Guidelines document provided with the Ciranova
PyCell Studio package (now available from Synopsys). However, there are some differences.

1. Ciranova does not allow white space within the string. In Xic, white space can appear between
the terms as shown above.

2. The semicolon following the name and the commas are optional, the terms can be white-space
separated.

130

CHAPTER 5. PARAMETERIZED CELLS AND VIAS

3. In both cases a property string can contain multiple grip specifications. Ciranova separates
the specifications by white space. In Xic, a new specification is started whenever a keyword
is repeated.

4. Ciranova requires that all keywords be provided in each specification, except for the name,
which can be omitted for names with varying key strings. In Xic, when parsing multiple
specifications, previous values of the various parameters are retained, so only changed values
need be given.

5. Xic keyword matching is case-insensitive.
The terms have the following significance.

name
A name for the stretch handle, which should be a unique string token within the pcell.

stretchType
Set to one of the keywords ‘relative” or “absolute”. Per Ciranova, if relative, the
increment is measured relative to the center of the rectangle, while absolute is the increment
measured according to the absolute X and Y directions. This parameter is ignored in Xic,
since the explanation does not seem to make sense.

direction
Set to one of the keywords “NORTH_SOUTH” or “EAST_WEST”, specifying the translation direction
of the stretch handle.

parameter
The name of the pcell parameter that is modified by the stretch handle.

minVal
A numerical value giving the minimum value of the parameter being modified. SPICE-style
scaling suffix values and units, e.g., 1K, 100nM, are acceptable, units are ignored.

maxVal
A numerical value giving the maximum value of the parameter being modified.

location
This specifies the location point for the graphical stretch handle on the layout rectangle. The
value must be one of

“Location.CENTER_LEFT”,

“Location.LOWER_CENTER”,
“Location.CENTER_RIGHT”,
“Location.UPPER_CENTER”,

which specify the left, bottom, right, and top sides. All Ciranova codes are handled, those
listed above display a line stretch handle, others will show a glyph.

userScale
This is a real number scale factor used to multiply the change in parameter value.

userSnap
The real number resolution value which should be used for snapping the parameter value, i.e.,
the reported parameter value will be an integer multiple of the userSnap.

key
The name used as a key to specify values for multi-valued parameters, and should be “None”
for ordinary parameters. Multi-valued parameters are not supported in Xic.

5.5. PCELL ABUTMENT 131

In Xic, stretch handles are available only in physical mode. They are visible in selected, expanded
instances only. A stretch handle is represented as a double-line highlighting of one of the four edges of
the rectangle to which the rip property is applied.

The user can drag the highlighted edge in a direction normal to the edge over a range set in the
property. The edge is ghost-drawn and attached to the mouse pointer during the move. Unlike some
other move operations in Xic, only dragging is allowed, clicking on a grip will do nothing special. If the
associated parameter has a constraint string defined, the highlighting will be visible only for allowed
values of the parameter.

5.5 PCell Abutment

Auto-abutment is most commonly used in MOS transistor pcells. If one overlays two compatible tran-
sistor instances, the two instances reconfigure themselves into a dual-gate configuration, eliminating
redundant geometry.

At this time, the only available example pcell that implements auto-abutment is the Nmos2 pcell
in the IPL_cnil30 library supplied with the Synopsys (Ciranova) PyCell Studio download. This is an
OpenAccess Python portable pcell which is part if the IPL (IPLnow.com) library of open-source portable
pcells.

The following procedure illustrates auto-abutment.

1. Download and install the Synopsys PyCell Studio package. This is free from Synopsys, but requires
registration and a password mailback. Versions are available for Linux and Windows, though the
Windows version is not currently supported in Xic.

2. Start Xicin an environment that will load the OpenAccess libraries and Python from the PyStudio.
Use “~Tcni” to reference the appropriate technology file. Edit an empty cell.

3. Select the OpenAccess Libs button in the File Menu, which will bring up the libraries list.

4. Select the IPL_cni130 library by clicking on the name. Then press the Contents button. A new
listing window will appear.

5. Scroll down in the new window and click on the Nmos2 entry.

6. Then click the Place button in the bottom-right corner of the same window. The Cell Placement
Control panel will appear. Press the Place button in this panel.

7. The Parameters panel will appear, and the cell placement icon will be attached to the mouse
pointer. Click twice in a drawing window to place two instances of the cell, far enough apart that
they don’t overlap. Press Esc to exit placement mode.

8. Use the Expand feature from the View Menu to set the display depth so that the instance
content will be shown.

9. Now for the fun part. Pop down any pop-up windows or otherwise move them out of the way.
Select one of the cell instances, and move it over the other, so that the right contact area of one
touches the left contact area of the other. Both instances will reconfigure themselves, and the
overlapped contact will be gone! The structure represents a dual-gate transistor.

10. Move one of the instances well away from the other. Note that they revert to their original form.

132 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

11. Click the PCell Control button in the Edit Menu. In the panel that appears, select Mode 2
(with contact) for Auto-abutment mode.

12. As before, move one of the instances so that the contacts overlap. In this case, note that one of
the instances retains the contact. This mode inplements trasistors with a shared contact.

The abutment protocol adheres as closely as possible to the description from the eda_tool_integration.pdf
document supplied with the PyCell Studio. There is one very significant difference, in that Synopsys
incorporates the logic into a separate non-visual pcell, which is created transiently to handle abutment
events. In Xic, the logic is built into the program. Thus, auto-abutment can be used in native language
and Tcl pcells in Xic, as well as Python pcells. In Xic, the internal logic handles abutment events, the
separate pcell is not used.

Auto-abutment is enabled in a cell through application of a number of object properties that define
aspects of the abutment. These are applied to objects created in the sub-master (or inherited from
the super-master). The Xic properties as described below correspond to the properties described for
abutment in PyCells, with generally identical syntax.

ab_class
This is equivalent to the Ciranova pycAbutClass property. It is applied to pin shapes to specify
that two pin shapes from different cells can be abutted. Only pins with the same ab_class property
string can trigger auto-abutment.

ab_rules
This is equivalent to the Ciranova pycAbutRules property. The property is applied to each pin
shape that can be abutted, and the string specifies how the pcell parameters are modified for
different abutment modes.

ab_directs
This is equivalent to the Ciranova pycAbutDirects property. The property is applied to each pin
shape that can be abutted, and the string contains a comma-separated list of one or more of the
string tokens left, bottom, right, and top. These specify the valid abutment directions.

ab_shapename
This is equivalent to the Ciranova pycAbutShapeName property. This property is assigned by the
pcell developer to each pin shape which can be abutted. It assigns a unique name to the shape.

ab_pinsize
This is equivalent to the Ciranova pycAbutPinSize The property is applied to each pin shape which
can be abutted, and supplies an orientation-independent width parameter.

ab_inst
This property is applied to instances of abutable cells, and contains an instance name. Xic normally
does not generate or use instance names.

ab_prior
This property of a pcell instance indicates that the instance is abutted, and this property contains
pre-abutment parameter values for use in reverting abutment.

ab_copy
This property is applied to instances with ab_prior properties that have just been copied. This will
allow parameter reversion of the copy without touching the partner of the original.

5.6. SYNOPSYS (CIRANOVA) PYCELL STUDIO 133

5.6 Synopsys (Ciranova) PyCell Studio

Most parameterized cells (pcells) have been written in the Cadence Virtuoso environment, using the
proprietary Skill scripting language found only in that environment. These pcells can only be used in a
Virtuoso environment.

Ciranova, Inc., now owned by Synopsys, developed and championed the idea of portable pcells, pcells
that would have published interfaces and use a common programming language, that could work in any
design environment. The company provides a free downloadable “PyCell Studio” design kit. The concept
is made possible by the use of OpenAccess, which has a well-defined framework for pcell support, is well
documented, and source code is published. Cadence Virtuoso and most modern tools use OpenAccess.

Though OpenAccess provides support for pcell interfacing and management, actual execution of the
peell script is exported to external code supplied as a plug-in. The plug-in provides an interface to the
language interpreter or compiler and other things required to execute the script. This plug-in is supplied
by the system vendor or user. For example, in a Virtuoso installation, a Skill plug-in is provided.
OpenAccess comes with example plug-ins for Tcl and C++.

Ciranova developed a Python plug-in for OpenAccess, with a set of interface functions for creating
geometry and related purposes within OpenAccess. Python is a very popular, modern, open source
scripting language. It is present on any standard Linux system, and is available for most other operating
systems. Ciranova calls portable Python-based pcells that use the Ciranova plug-in “PyCells”.

The PyCell Studio design kit contains tools for viewing, testing, and creating PyCells. An example
library of PyCells is provided, complete with technology and display resource files. It also provides
OpenAccess and Python, so the package is quite complete. There is comprehensive documentation and
tutorials.

Though Ciranova has been bought by Synopsys, the PyCell Studio remains available and apparently
is still under development. An industry group, IPLnow.com, which includes TSMC and other foundries
and some tool vendors, is pushing the cause of “interoperable” PDK libraries based on portable pcells.

Whiteley Research fully supports this effort, and Xic will be interoperable with the PyCell Studio
design kit and PyCells as much as possible.

5.6.1 Connecting to PyCell Studio

This section describes how Xic can directly interface to the PyCell Studio example library and technology.
PyCells from the library, or authored by the user, can be instantiated in Xic cells.

It will be assumed in this discussion that the PyCell Studio has been downloaded from Synopsys,
and installed on your system, which also has Xic installed. The PyCell Studio works with Red Hat
Enterprise Linux releases 5 and 6 (and equivalent). You must choose the same word size (32 or 64 bits)
as your Xic installation. The installation location for PyCell Studio is selected by the user, and we will
refer to this location as “$CNI_R0O0T”. For example, $CNI_ROOT might be /usr/local/ciranova.

Although your system will almost certainly have Python installed, it appears necessary to use the
Python provided with the Studio. In Red Hat EL6, the Ciranova and stock Python version numbers
are the same, but the libraries are apparently built with different options, and attempts at using the
stock Python have failed (perhaps Synopsys will fix this?). You can, however, use your own OpenAccess
installation if you have one and it is reasonably recent. You can probably also use OpenAccess from
Cadence.

The first step is to make sure that the PyCell Studio installation is correct by following the steps in

134 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

the $CNI_ROOT/quickstart/README. txt file.

Part of this procedure (step 3) is to source one of the startup files provided. This step sets the value
of several environment variables, and forces the system to find the Ciranova Python instead of a local
Python. It also installs the OpenAccess plug-in for Python. The user can customize this script if desired.
It is necessary to source this file, or otherwise setup the environment as per the file, before starting Xic.
After finishing, you will want to revert the environment to the previous state. Unfortunately, this is
difficult. You may kill the window and start a new one.

A better way to run Xic in the Ciranova environment would be to write a script such as the following.
Call it “xic.cni”.

#! /bin/sh

CNI_ROOT=/usr/local/ciranova
source \$CNI_ROOT/quickstart/bashrc; xic -Tcni \$*

The CNI_ROOT line should be changed to the actual Ciranova installation location. After creating the
file, make it executable with

chmod 755 xic.cni

Then, to run Xic in the Ciranova environment, just run this script instead. Since it runs in a sub-shell,
the environment of the main shell is not corrupted. Any command line arguments are passed through.

Note that above Xic is started with a “~Tcni” option, which specifies to use the xic_tech.cni exam-
ple technology file provided with Xic. This uses the ReadDRF and ReadCniTech directives to read display
resource and technology files from the Ciranova installation. However, Ciranova provides a number of
technology files, any you may want to try them. You will probably want to copy the xic_tech.cni file
to your local directory, so that it can be edited easily.

Finally, you will need to set up your OpenAccess 1ib.defs to include the Ciranova libraries. The
lib.defs file is a listing of the OpenAccess libraries available, very similar to the cds.1ib file in Cadence.
If no 1ib.defs file exists in the current directory, using a text editor create the file with a single line

INCLUDE path/to/ciranova/quickstart/1ib.defs

The path/to/ciranova is the installation location, what we have called $CNI_ROOT. If there already is a
lib.defs file, the line above should be added.

Once setup is complete, we can test it.

1. prompt> ./xic.cni
Xic should start, and the “Using OpenAccess” and “Using Python” messages should appear in the
console. The layer table will show perhaps unfamiliar layers, these have been obtained from the
Ciranova technology file. There shouldn’t be any error or warning message pop-ups.

2. Switch the editing context to a new, empty cell, if the current cell is not empty or is otherwise of
value.

3. Click the OpenAccess Libs button in the File Menu, which will exist if OpenAccess is connected
(the “Using OpenAccess” message appeared). This will bring up the OpenAccess Libraries
panel. The following libraries will be listed.

5.7. CADENCE™ COMPATIBILITY 135

IPL_cni130
cnVPcellLib

4. Click on the IPL_cni130 line to select it, and press the Contents button. The Listing panel
should appear, loaded up with names.

5. In the Contents, find the Nmos2 entry, and click on it to select it.

6. Press the Place button in the Contents listing. The Cell Placement Control panel will appear.
Press the Place button in this panel, and the Parameters pop-up will appear. There will be a
double-line box “attached” to the mouse pointer.

7. Have a quick look at the Parameters panel. These are the pcell parameters that can be set.
Feel free to enter some new values. The documentation for the Nmos2 pcell will explain what the
parameters are, though a few, such as fingers, 1, and w, are obvious.

8. Click anywhere in the drawing window to place an instance. You should expand the view to show
the instance content, press Ctrl-x for this. You can place more instances, perhaps with different
parameters set. Press the Esc key when done.

9. Click on one of the instances to select it. Note that some of the sides of certain features are
highlighted. These are stretch handles that can be dragged, to change the size of the feature. Try
dragging a handle and note the effect.

10. Place a second instance of Nmos2 so that it doesn’t overlap ther first.

11. Move the second instance, place it so that one of the S/D contacts overlaps a contact of the first
instance. Note that the overlapping contact has disappeared in both instances. This is auto-
abutment. the two instances can be repositioned so as to exactly share the common edge, which
implements a dual-gate transistor.

12. Press the PCell Control button in the Edit Menu, which will display the PCell Control
pop-up. In the pop-up, change the Auto-abutment mode to Mode 2 (with contact).

13. Move one of the cell instances well away from the other, note that both instances revert to the
original form. Now drag and drop one of the instances over the other so that they share a contact,
as before. This time, however, note that a common contact is retained.

This should be enough to get started, have fun!

5.7 Cadence’ Compatibility

Limited compatibility with Cadence Virtuoso?™ is available on two levels. First, technology, display

resource (DRF), and layer mapping files can be read directly by Xic. These files are generally provided
in vendor-supplied process design kits intended for use with Cadence Virtuoso. Second, the OpenAccess
plug-in allows Xic to access the Cadence libraries directly. Designs can be loaded into Xic, however
presently they cannot be returned to Virtuoso without losing data required by Virtuoso.

For export to a Cadence environment, the !dumpecds command will create compatible technology
and DRF files based on the Xic technology file in use.

Import of a Cadence technology environment is handled by three keywords which are given in the Xic
technology file. In fact, a minimal technology file can consist of little more than these keywords. The
keywords should appear in the order given, but otherwise can appear anywhere in the Xic technology
file.

136 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

ReadDRF drf_file
This reads the display resource file (DRF), which creates tables of layer colors, fill patterns, and
similar for use in displays.

ReadCdsTech techfile
This will read a Virtuoso ASCII technology file. The technology file contains the layer definitions,
and usually quite a lot of technology information. From this, many of the Xic design rules and
extraction keywords can be obtained.

ReadOaTech library
This will obtain Virtuoso technology information directly from OpenAccess. The library is an
OpenAccess library, listed in the 1ib.defs or cds.lib file. This obtains technology information
by use of the OpenAccess plug-in. There should be no reason to use both this and ReadCdsTech,
as they should retrieve the same information.

ReadCdsLmap filename
The filename is the path to a Virtuoso layer mapping file. This provides GDSII layer/datatype
numbers for the layers. This must appear in the Xic technology file after ReadCdsTech.

An Xic technology file can consist of these statements only. This will set the layers and their colors,
fill patterns, and some or all of the electrical, extraction, and design rule information.

When a technology file is written with the Save Tech command, it will have the usual format and
the lines described above are not included in the new file.

The ability to read the Lisp/Skill file format used by Virtuoso is provided by an internal Lisp parser.
The parser is available to run general scripts through the !lisp command, though this has limited utility
at present.

In the technology file, is is sometimes useful to enable debugging output from the Lisp parser. The
following keyword enables this.

LispLogging [y/n]
If this boolean keyword is set in the technology file, a log file will be generated when the Lisp parser
is used. This can be used to track down issues when parsing Virtuoso-style input files. Asserting
this keyword is equivalent to setting the Lisp logging in the Logging Options panel from the
Help Menu, which otherwise can’t be done before the technology file is read on program startup.

5.7.1 The Lisp Parser

The language supported here is similar to Lisp, and to the Cadence Skill language. The intention is not
to replicate all features of these languages, but to provide a minimal subset of features for compatibility.
The language will be referred to as “Lisp”, but it should not be confused with the full-blown programming
language.

The language differs from classic Lisp in that algebraic expressions within lists are evaluated, as in
Skill. These reduce to a number token. One subtlety is detection of unary minus, for example (2 -1)
could be interpreted as a list of two numbers, or one number (the difference). The parser will assume a
unary minus if the preceding character is space or ‘(’, and the following character is an integer or period
followed by an integer.

One of the advantages of Lisp is the ease with which the syntax can be parsed. The basic data object
is a “node”, which has the form

5.7. CADENCE™ COMPATIBILITY 137

[name](data ...)

If a node has a name, there is no space between the name and the opening parenthesis. A named node
is roughly equivalent to a function call. The data can be nodes, strings, or numerical expressions. The
items are separated by white space. The data can use arbitrarily many lines in the input file.

Lisp variables are defined when assigned to, and have global scope unless declared in a let node, in
which case their scope is within the let node, i.e., local.

A Lisp file consists of one or more named nodes. When the file is accessed with the !lisp command,
each of the nodes is evaluated. The nodes must have names that are known to Xic. These are:

main
The content of this node is evaluated. This is a special name for the ”main” function of a script.

Built-in function name
These are the basic Lisp functions and operator-equivalents.

Xic function name
All of the Xic script functions will be recognized, however in Lisp the first character of these
functions is always lower case. i.e., the Edit script function would be accessed as edit() in Lisp.
Also, only Xic functions that take string or numeric arguments will work at present.

User-defined procedures
These are Lisp functions defined by the user with the Lisp procedure() function.

Cadence compatibility name
There is a growing number of node names that are used to interpret Cadence startup and control
files (see 5.7).

A node name that can’t be resolved will generate an error.

The parser uses the same numerical parser as the WRspice program, and hence recognizes numbers
in the same (SPICE) format. All of the math functions based on the standard C library, as used in the
native scripting language, are available.

The following built-in node names are recognized.

138 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

Operator Equivalents
expt expt(x y) < z"y
times times(x y) <=z *xy
quotient quotient(x y) <= x/y
plus plus(x y) <=z +y
difference | difference(x y) <=z —y
lessp lessp(x y) <=z <y
legp leqp(x y) <=z <=y
greaterp greaterp(x y) <=z >y
geqp geqp(x y) <=z >=y
equal equal(x y) <=z ==
nequal nequal(x y) <=z !l=y
and and(x y) <=z && y
or or(xy) <z |l y
colon colon(x y) < (zy) <= =x:y
setq setq(x y) «—z =y

Lists
’ returns list of arguments
list returns substituted list of arguments
cons add element to front of list
append append lists
car return leading element of list
cdr return list starting at second element
nth return N’th element of list
member return true if element in list
length return length of list
xCoord return first element of list
yCoord return second element of list
Miscellaneous

main main function
procedure | define a procedure
argc command line argument count
argv command line argument list
let variable scope container

5.7.2 The ReadDRF keyword

This technology file keyword is used to import a Cadence Virtuoso display resource (DRF) file into Xic.
The syntax is

ReadDRF drf_file

The display resource file is generally provided by a process design kit intended to be used with Virtu-
0so. The file contains definitions of the layer colors and fill patterns, and other presentation attributes.
Although the names may vary, the display resource file in one installation is named “display.drf”

The display resource file (DRF) ia a collection of “nodes”, as understood by the Lisp parser. A
named node has the form

name(data ...)

5.7. CADENCE™ COMPATIBILITY 139

There can be no space between the node name and the opening parenthesis. The data are other Lisp
nodes, strings, or numerical data or expressions. This can occupy arbitrarily many lines in the file. The
DRF file consists of successive Lisp nodes, with names and expected content defined by Cadence.

The following top-level display resource Lisp nodes are understood by Xic. Presently, the only effect
from these nodes is the creation of internal lists of data items, which are referenced by the nodes given
in the Cadence ASCII technology file. Thus, reading in the display resource file has no effect on Xic
operation other than providing display attributes for layers defined in the Cadence ASCII technology
file.

drDefineDisplay
This node is ignored.

drDefineColor
For all entries with a display name of “display”, the color is added to an internal color list. This
internal list will be referenced in the technology file techDisplays node.

drDefineStipple
For all entries with a display name of “display”, the stipple pattern is added to an internal stipple
list. This internal list will be referenced in the technology file techDisplays node.

drDefinelLineStyle
This node is ignored.

drDefinePacket
For all entries with a display name of “display”, the packet is added to an internal packet list.
This internal list will be referenced in the technology file techDisplays node.

5.7.3 The ReadCdsTech keyword

This technology file keyword is used to import a Cadence Virtuoso ASCII technology file into Xic. The
syntax is

ReadCdsTech techfile

The ASCII technology file is generally provided in process design kits intended for use with Virtuoso.
The file name varies, but “techfile” and “techfile.txt” have been used. The file at minimum
provides the list of layers used in the process. Generally, there is a wealth of technology information
available, and the file can be quite large and complex.

If a display resource file is also being read, it should be read first. Other than this, ReadCdsTech can
appear anywhere in the technology file, and will cause Xic to read information from the Cadence ASCII
technology file given in techfile. This should be a full path to the file, unless the file is in the library
search path.

The technology file is collections of “nodes”, as understood by the Lisp parser. A named node has
the form

name(data ...)

There can be no space between the node name and the opening parenthesis. The data are other Lisp
nodes, strings, or numerical data or expressions. This can occupy arbitrarily many lines in the file. The

140 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

file consists of successive Lisp nodes, with names and content that are defined by Cadence or OpenAccess.
The nodes that are understood by Xic are described below.

Both Virtuoso 5.x and 6.x technology files can be read. Far more information can be obtained from
6.x (OpenAccess) technology files, however. This includes:

e Extraction technology keywords such as Conductor, Via, etc. (as are available from 5.x files) but
additionally electrical/physical data such as Thickness, resistivity, and capacitance parameters
are available.

e Design rules are generated from the “constraint groups”.

This will provide a much more complete starting point from the technology file provided with a
foundry kit. However, this still may be incomplete. For example, a typical technology file may provide
thickness values for conductors only, not insulators.

Depending on the PDK, the imported design rules and derived layer definitions may require review
and augmentation. The “real” design rules are likely provided in separate configuration files for Mentor
Calibre, Cadence Assura, and/or others. In experience with one PDK, it was found that the rule set
obtained through the OpenAccess technology database left a lot to be desired.

1. The very basic rules, such as MinWidth and MinSpace came through fine, including the spacing
tables. Other simple rules also come through properly.

2. Derived layers come across fine, however within the syntax limitation, expresions are limited to a
single operator, i.e., a form like “layer operator layer”. Thus, a complex definition requires multiple
derived layers for intermediate layers, which is acceptable. It was concerning, though, that the
derived layers were not used anywhere within the technology file, such as in the constraints. There
seemed also to be errors, for example one obvious place where “‘and” was used where “‘or” was
clearly required.

3. The constraints helpfully included a design rule violation number, but were shown to be wrong
when the rule was looked up. For example, One rule specified “(PP OR NP) Enclosure of PO ...”,
yet there were separate constraints “PP Enclosure PO...” and “NP Enclosure PO...” specified,
which is wrong.

4. An attempt to DRC a known-clean layout with imported rules yielded a lot of bogus errors.
Additional work would be necessary to obtain a “good” set of design rules.

5. As more tools use OpenAccess, perhaps there will be improvements in the rulesets provided through
the OpenAccess technology database. At present, it appears that this is not primary to the serious
DRC tools, but may be used by Virtuoso, possibly for editing feedback.

The tree below shows the hierarchy of the nodes that are recognized in the technology file. Most
of these are ignored. Below we describe the nodes that are actually used, and what information they
provide.

Below, nodes that were added for Virtuoso 6.1.4 are marked marked with an asterisk. The
constraintGroups listing is greatly simplified, there is actually far more structure than indicated.

include
comment
controls

5.7. CADENCE™ COMPATIBILITY 141

techParams
techPermissions
viewTypeUnits *
mfgGridResolution *
layerDefinitions
techLayers
techPurposes
techLayerPurposePriorities
techDisplays
techLayerproperties
techDerivedLayers *
layerRules
functions *
routingDirections *
stampLabellLayers *
currentDensityTables *
vialLayers
equivalentLayers
streamLayers
viaDefs *
standardViaDefs *
customViaDefs *
constraintGroups *
foundry *
spacings *
maxWidth
minWidth
minDiagonalWidth
minSpacing
minSameNetSpacing
minDiagonalSpacing
minArea
minHoleArea
viaStackLimits *
spacingTables *
orderedSpacings *
minOverlap
minEnclosure
minExtension
minOppExtension
antennaModels *
electrical *
LEFDefaultRouteSpec *
interconnect *
maxRoutingDistance *
routingGrids *
verticalPitch *
horizontalPitch =*
verticalOffset *
horizontalOffset *
devices

142 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

tcCreateCDSDeviceClass
multipartPathTemplates *
extractMOS *
extractRES *
symContactDevice
ruleContactDevice
symEnhancementDevice
symDepletionDevice
symPinDevice
symRectPinDevice
tcCreateDeviceClass
tcDeclareDevice
viaSpecs *
physicalRules
orderedSpacingRules
spacingRules
mfgGridResolution
electricalRules
characterizationRules
orderedCharacterizationRules
leRules
leLswlLayers
1xRules
1xExtractLayers
1xNoOverlapLayers
1xMPPTemplates
compactorRules
compactorLayers
symWires
symRules
lasRules
laslLayers
lasDevices
lasWires
lasProperties
prRules
prRoutinglayers
prViaTypes
prStackVias
prMasterslicelayers
prViaRules
prGenViaRules
prTurnViaRules
prNonDefaultRules
prRoutingPitch
prRoutingOffset
prOverlaplLayer

We mention below only the nodes from which information is extracted. Note that this is a mixture
of 5.x and 6.x nodes, providing unified support for all current Virtuoso releases. In most cases, a node
with an unrecognized name will produce a warning message. These can be ignored, the purpose is only

5.7. CADENCE™ COMPATIBILITY 143

to identify “new” information in the technology file that might be useful to parse.

include
This node contains a string, which is a path to another Lisp file. That file will be opened and read.

controls/viewTypeUnits
For maskLayout, if microns, the Xic database resolutions 1000, 2000, 5000, 10000, and 20000 are
accepted.

controls/mfgGridResolution
This will set the Xic MfgGrid parameter.

layerDefinitions/techLayers
This associates OpenAccess layer numbers with layer names and abbreviations. These are recorded
in the Xic layer database.

layerDefinitions/techPurposes
This associates OpenAccess purpose numbers with purpose names and abbreviations. These are
recorded in the Xic layer database.

layerDefinitions/techLayerPurposePriorities
This contains a list of layer-purpose pairs, using layer and purpose names previously defined. Each
layer-purpose pair is used to create an Xic layer. These are created in the order listed.

In Virtuoso, there is no distinction between physical and electrical layers as there is in Xic. All
Virtuoso layers are taken as physical layers, except for the following internal Virtuoso layer numbers
which with any purpose number will generate an Xic layer listed in both the electrical and physical
layer tables in Xic.

Layer Number Virtuoso Layer Name

228 wire

229 pin

230 text

231 device
236 instance
237 annotate

layerDefinitions/techDisplays
This will assign the colors and fill patterns to layers that exist in the Xic layer table. This references
the internal packet, color, and stipple lists created from the display resource nodes. In addition,
the initial visibility and selectability states are set here, as well as the Invalid flag.

layerDefinitions/techLayerproperties
This node provides some directly applicable parameters, which are read and added to the appropri-
ate layer. These include sheetResistance, areaCapacitance, edgeCapacitance, and thickness.
The thickness value is specified in angstroms, which is converted to microns. The capacitance value
units are picofarads and microns, thus no conversion is required.

layerDefinitions/techDerivedLayers
The derived layers will be imported directly, with the expression converted to an Xic layer expres-
sion string. The expression given in this node type consists of a single operator and two layer
names. The operator keywords which map to geometrical combinations (’and, ’or, ’not, and
’xor) are accepted. Others are ignored.

144 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

layerRules/routingDirections
Layers found in this table are given the Routing attribute.

layerRules/vialayers
The conducting layers are assigned the Conductor attribute. The via layer is assigned the Via
attribute. This is in 5.x files only.

layerRules/streamLayers
A GDSII import/export mapping is applied for each layer given. This is in 5.x files only.

viaDefs/standardViaDefs
This identifies layers that are given the Via attribute. The metal layers that are referenced by
the via are given the Conductor attribute. The standard via definition is imported, and will be
available for via generation from the Via Creation panel from the Edit Menu.

constraintGroups/foundry/spacings/maxWidth
This identifies a MaxWidth rule.

constraintGroups/foundry/spacings/minWidth
This identifies a MinWidth rule.

constraintGroups/foundry/spacings/minDiagonalWidth
This will map to a Diagonal clause in a MinWidth rule.

constraintGroups/foundry/spacings/minSpacing
This maps to either a MinSpace rule (one layer given) or a MinSpaceTo rule if two layers are given.

constraintGroups/foundry/spacings/minSameNetSpacing
This provides the SameNet clause to a MinSpace or MinSpaceTo rule.

constraintGroups/foundry/spacings/minDiagonalSpacing
This provides the Diagonal clause to a MinSpace or MinSpaceTo rule.

constraintGroups/foundry/spacings/minArea
This identifies a MinArea rule.

constraintGroups/foundry/spacings/minHoleArea
This provides the dimension for area filtering in a NoHoles rule.

constraintGroups/foundry/spacings/minHoleWidth
This provides the dimension for minimum width filtering in a NoHoles rule.

constraintGroups/foundry/spacingTables
This provides tables of length, width, and spacing values, for size-dependent spacing rules. These
tables are parsed and added to MinSpace and MinSpaceTo rules.

constraintGroups/foundry/orderedSpacings/minEnclosure
This maps to a MinSpaceFrom rule, with the source and target layers swapped. It provides the
Enclosed clause, which applies when the target figure is completely surrounded by the source
material. The alias minEnclosureDistance is also recognized.

constraintGroups/foundry/orderedSpacings/minExtension
This is almost identical with minEnclosure, but does not require that the target figure be fully
surrounded. It maps to a MinSpaceFrom rule in the same manner, but sets the rule dimension, not
the Enclosed value. The alias minOverlapDistance is also recognized.

5.7. CADENCE™ COMPATIBILITY 145

constraintGroups/foundry/orderedSpacings/minOppExtension
This is handled similarly to the two rules above, but sets the Opposite clause of the MinSpaceFrom
rule.

constraintGroups/LEFDefaultRouteSpec/interconnect/maxRoutingDistance
This provides the maxdist routing parameter (see A.6.4).

constraintGroups/LEFDefaultRouteSpec/routingGrids/horizontalPitch
constraintGroups/LEFDefaultRouteSpec/routingGrids/verticalPitch
These provide the pitch routing parameter (see A.6.4).

constraintGroups/LEFDefaultRouteSpec/routingGrids/horizontalOffset
constraintGroups/LEFDefaultRouteSpec/routingGrids/verticalOffset
These provide the offset routing parameter (see A.6.4).

layerRules/routingDirections
This provides the preferred routing direction.

constraintGroups/foundry/spacings/minWidth
This maps to the width routing parameter (see A.6.4).

5.7.4 The Read0aTech keyword

This is similar to ReadCdsTech, however it retrieves the tech data from OpenAccess relative to a given
library, instead of from the ASCII technology file. The syntax is

ReadOaTech library

The library must be listed in the OpenAccess library definitions file, named lib.defs or named
cds.lib in Cadence installations. The OpenAccess plug-in is used to obtain the information, and of
course must be available and set to connect to an OpenAccess database.

The technology information is extracted into a temporary Virtuoso ASCII technology file, which is
then parsed by the equivalent of specifying ReadCdsTech with this file. The same file can be obtained
from the print option of the !oatech command. This can be used to view the tech information that is
being extracted.

5.7.5 The ReadCdsLmap keyword

This technology file keyword allows import of a Cadence Virtuoso layer mapping file. This file provides
the layer/datatype numbers for the layers defined in the display resource file. It is important that these
numbers be equivalent in Xic for success in transferring design data via GDSII or OASIS files. The file
is generally provided within a process design kit. The name of the file will vary, in one case it is the
name of the technology with a “.layermap” extension.

The syntax is
ReadCdsLmap filename

The filename is a path to the Virtuoso layer mapping file. This must appear in the Xic technology
file after the ReadCdsTech line, as the layers must exist in the Xic database before they can be assigned
a GDSII mapping.

146 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

5.7.6 Connecting to Cadence Installations

The OpenAccess plug-in (see 2.11) makes it possible for Xic to access Cadence cell libraries, by making
use of the OpenAccess libraries provided with the Cadence installation.

When accessing Virtuoso design data, Xic should be provided with a consistent technology file. The
Cadence compatibility features include the ability to read Virtuoso display resource, ASCII technology,
and GDSII layer mapping files. These files are provided in the process design kit in use. The user
should create a skeletal Xic technology file which will read these files. Then, layout appearance will be
consistent between Virtuoso and Xic.

Compatibility and Setup

The present release of Xic is known to be compatible with Virtuoso 6.1.6 in terms of OpenAccess
versioning. It is very likely compatible with earlier 6.1.z releases, but these have not been tested, though
6.1.4 has been verified with earlier Xic releases.

The installation location of the Cadence tools may be set in the environment variable CDSHOME.
The user should verify that this variable is set in the environment. If not, the user must locate the
installation directory for Cadence tools some other way.

Listing the installation directory, e.g.,
1ls $CDSHOME

will provide a listing of files and subdirectories, which include the names “tools” and “tools.1lnx86”.
In addition, there will be a subdirectory (perhaps more than one) with a name similar or identical to
“0a_v22.43.050”. This is OpenAccess. In this directory you will find a “1ib” directory containing
subdirectories with library files for 32 and 64-bit systems. The files of interest will match the Xic
installation bit-width. The OpenAccess provided with Virtuoso 6.1.6 is newer than the publicly available
version of OpenAccess that Xic is compiled against, but that does not appear to matter. If there are
multiple OpenAccess versions present, probably the newest one (largest release numbers) should be used,
but if problems are encountered other versions can be tried.

The full path to the directory containing the appropriate OpenAccess shared library files must be
added to the system’s library search string. On an example Cadence installation, the path, for 64-bits,
is

$CDSHOME/o0a_v22.43.050/1ib/1inux_rhel50_gcc44x_64/opt

In addition, callbacks may require that Xic have access to additional shared libraries supplied by Cadence.
For 64-bits, this directory is

$CDSHOME/tools.1nx86/1ib/64bit

Traditionally in Unix/Linux, the shared library search path is modified by setting the
LD_LIBRARY_PATH environment variable. This variable provides additional locations for the system to
search for needed shared libraries, in addition to system default locations that are implicit.

This variable can be used to set the search path, but in Xic there is a better way: set the
XIC_LIBRARY_PATH environment variable instead. This is like LD_LIBRARY_PATH. but applies only to

5.7. CADENCE™ COMPATIBILITY 147

the Xic program. Setting LD_LIBRARY_PATH applies to all programs, whether they need the additional
search locations or not.

The XIC_LIBRARY_PATH variable is most conveniently set in the user’s shell startup file. The variable
string consists of a list of directories, separated by colon (‘:’) characters. The directories in the list are
searched left-to-right to resolve shared library references, when a program is started. One should probably

also include the value of the LD_LIBRARY_PATH in case that has been set for some other reason.

For our example, lines like the following should be added to the shell startup files. For bash and
similar:

Hook Xic to the Cadence OpenAccess library
XIC_LIBRARY_PATH=$CDSHOME/o0a_v22.43.050/1ib/1inux_rhel50_gcc44x_64/opt
XIC_LIBRARY PATH=$XIC_LIBRARY PATH:$CDSHOME/tools/1lib/64bit

export XIC_LIBRARY_PATH

and for C-shell:

Hook Xic to the Cadence OpenAccess library
setenv XIC_LIBRARY_PATH $CDSHOME/oa_v22.43.050/1ib/linux_rhel50_gcc44x_64/opt
setenv XIC_LIBRARY PATH $XIC_LIBRARY PATH:$CDSHOME/tools/1ib/64bit

Similar commands can be given on the command line.

Once the new definitions apply, when Xic starts, the following message should appear on the console
among the initial startup messages:

Using OpenAccess (oa.so).

If the message is not seen, try setting the XIC_.PLUGIN_DBG environment variable and starting Xic again.
Messages printed in the console window should indicate where the error occurs.

With OpenAccess successfully connected, the File Menu will contain the OpenA ccess Libs button.
If Xic was started in a directory with a cds.1ib file, the libraries in the file should be listed in the pop-up.
Probably, it is best when working with Xic to work from a different directory than when working with
Virtuoso. If so, you will want to copy in your cds.1ib file, which defines the Cadence libraries available.
You can modify this copy with a text editor if desired. The libraries will be listed in the OpenAccess
Libraries panel if they exist.

Express PCells

In Virtuoso, foundry devices are most likely represented as parameterized cells (pcells). These are cells
with an internal script which generates a physical layout according to a set of device parameters.

Parameterized cells in the Cadence environment are most probably based on the Skill language and
are not portable outside of a Cadence environment. However, Virtuoso provides a feature called “Express
PCells” which caches pcell sub-masters in the user’s home directory. A pcell sub-master is an ordinary
cell, created from a pcell using a specific parameter set. The pcell cache provides the benefit that pcell
evaluation is avoided, so that designs may be opened more quickly. A second advantage is that the
cached sub-masters, unlike the pcells, can be exported.

Before a design containing Skill-based pcell instances can be fully loaded into Xic, the Express PCell
feature must be enabled, and all of the pcell submasters must be cached.

148 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

One should be aware that if only a schematic is being imported into Xic, it isn’t necessary to worry
about pcells, as the pcell schematic symbol is available. Only the physical layout changes with different
device parameters.

To enable Express PCells, the environment variable CDS_ENABLE_EXP_PCELL should be set to
“true”. Again, this is most conveniently done in the user’s shell startup script. For bash:

export CDS_ENABLE_EXP_PCELL=true
For C-shell:
setenv CDS_ENABLE_EXP_PCELL true

From a Virtuoso Layout Editor window, the Tools menu will contain an Express PCell Manager
button. This brings up a window allowing control of the feature. With the feature on, loading a design
will populate the cache. It should then be possible to load the same design into Xic, with no unresolved
peell references. Note that when obtaining the pcell sub-masters through OpenAccess, a license checkout
for the Cadence system occurs. Cadence will not export a sub-master from the cache without a license.

5.7.7 Importing a Design from Virtuoso

Once the OpenAccess database of a Cadence Virtuoso installation is connected to Xic, designs created in
Virtuoso can be imported into Xic. Physical (layout) data should transfer without issues. Schematic and
schematic symbol data will transform as electrical cells, some of which are devices. These will probably
work successfully as Xic cells, but it is possible that a bit of intervention will be needed. It is disasterous
if the cells are written back to Virtuoso. By default, Virtuoso libraries are read-only in Xic to prevent
this from happening.

Xic obtains technology information from its own technology file, and (presently) not directly from
OpenAccess. However, the same technology information should be available to Xic through direct reading
of the appropriate display.drf and ASCII technology files. These files should be available in the process
design kit in use.

The user’s cds.1ib file (or a copy) should exist in the current directory. This file will be used and
updated by Xic. It is fine to share a cds.1lib with an active Virtuoso installation, but it is probably better
to maintain separate files, so that the Xic libraries, which are presently incompatible with Virtuoso, are
invisible in Virtuoso.

If the OpenAccess database is connected, the OpenAccess Libraries panel, from the OpenA ccess
Libs button in the File Menu, will display the libraries that are defined in the cds.1ib file. The button
will appear in the File Menu only if an OpenAccess database is connected.

From the panel, one can select a library by clicking on the listing, and list the contents with the
Contents button in the panel. Pressing the Contents button brings up a listing of the cells contained
in the library.

Presently, Xic does not use “views” in the same manner as Virtuoso. Each of the listed cell names
contain one or more of the following OpenAccess standard views, which are used to create the Xic cell.
The maskLayout view contributes the physical data. The schematic view provides the electrical data,
and the schematicSymbol view provides the Xic symbolic representation. Other views are ignored by
Xic.

In the Listing panel, one can select cells bu clicking on a name. When a cell is selected, the Open
button becomes active. Pressing this button will read that cell, and its hierarchy, into Xic. Note that

5.7. CADENCE™ COMPATIBILITY 149

it does not matter whether or not the library is “open” in the OpenAccess Libraries listing. The
“open” status means that cells in the library will resolve instantiations as archive files are being read,
but explicitly read cells, and subcells referenced in OpenAccess, are always read.

Before data can be successfully read into Xic, Virtuoso parameterized cells must be cached, using
the Cadence Express PCells feature. Xic can not create super-masters for Virtuoso (Skill-based) pcells,
but will import cached super-masters. The imported cell will be an ordinary cell in Xic, but will retain
properties that identify the cell as originating as a Virtuoso pcell.

Once the hierarchy is read, it should appear visually very similar if not identical to the corresponding
views in Virtuoso, if the appropriate technology has been accessed properly. Electrical cells will always
have a symbolic representation, since in Virtuoso schematic instantiations are always symbolic, unlike
in Xic.

If there are errors or warnings emitted during the import, the log file listing will appear. The user
should inspect this and take appropriate action if needed.

With the design now local in Xic, it can be saved to disk in any of the formats supported by Xic.
Initially, it is recommended saving the imported design as a collection of native cell files, into a clean
directory. The Export Control panel from the Convert Menu can be used for this. Then, the devices
can be “harvested”.

Initially, a number of the imported cells represent devices. These correspond to Virtuoso pcells, and
have the same name. Except for some terminal devices that are created during translation as needed, the
standard device library is not used. The imported devices serve the same purpose as the library devices,
and will work in the same way. However, they will not appear in the device selection menus, and they
are treated as ordinary cells in the hierarchy. By “harvesting” the devices, we will make “official” Xic
devices out of them, allowing use in other designs, and remove them as ordinary cells in the imported
hierarchy.

The following procedure can be used to identify the “device” cells. Bring up the Cells Listing panel
from the Cells Menu. In the lower right-hand corner, select Elec Cells in the menu. Click the Filter
button on the side of the listing, which will bring up the Cell List Filter panel. Make sure that the
only box checked is the one next to Device (between not and Device). Then click Apply. The listing
will now consist of the device cells only. You should save this list, using Save Text or otherwise.

After saving the imported design in a directory as native cell files, Xic can be exited. To harvest
the devices, we will create a new directory (if needed), and move the device cells in our list from the
directory containing our design to the new directory. We will then add the new directory as a reference
in a local device.1lib file, if this hasn’t been done previously. Then, next time we use Xic, the devices
will be present in the device selection menus, and can be used in new schematics just as any other device.
Specifically, suppose that you saved the design as native cell files in a directory named “chip1”, and you
have another directory named “devices”. By hand, move each of the files in the list of devices from
chipi<to devices. Then, add the devices directory to the device.lib file. The default system-wide
device.lib is in the startup directory in the installation area (/usr/local/xictools/xic/startup
by default). You can modify this file, or better copy this file to your current directory, and modify the
copy. With a text editor, add a line to the end of the

device.lib file:
Directory /full/path/to/your/devices
The second token should be the actual full path to the devices directory that you created. Note

that in the future, all that you need to do to “install” a new device is to move the file into your devices
directory.

150 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

Once finished, one can start Xic again, with the same technology file, and read in the top-level cell
from the saved native cell files directory. The devices will be included, now resolved through the library
mechanism. One may wish to save the design in an archive format such as OASIS or GDSII, which may
be more convenient than the directory full of cell files. The archive file will not contain the devices.
Be aware that to export the design to another Xic installation, the devices directory will have to be
exported too.

5.8 Standard Vias

Xic provides a feature for creating and managing via objects used to connect between conducting layers
in physical layouts. Although ordinary cells or cut-layer objects can be used for this purpose, use of
standard vias offers some important advantages in many designs.

e The vias can contain the structure necessary so that proper use automatically satisfies design rule
constraints.

e The vias are designed to allow a zero search depth for extraction, speeding this process.

e The creation of the “sub-master” cells that implement the vias is handled transparently by the
system, removing the often large number of ordinary via cells from the cell listings. The via cells
are no longer written in output, reducing file size and complexity.

e The vias are easily created from the Via Creation panel in the Edit Menu and can be placed
immediately, which is quick and efficient.

In order for this feature to be available, one or more standard vias definitions must appear in the
technology file. These will also be imported from a Cadence Virtuoso ASCII technology file if the
ReadCdsTech keyword is used, and the Cadence database contains standardViaDefs definitions. The
implementation of standard vias in Xic closely follows the implementation in OpenAccess, and tools such
as Virtuoso that use OpenAccess.

The standard vias that are defined in the technology provide the default definitions for a via structure.
Although commonly instantiated directly, more commonly variations are implemented. There are a
number of parameters that define the via, and these can be changed by the user to produce a variant
most suitable in the context where it will be used. For example, the cut can be arrayed when lower
contact resistance is required.

The mechanism is similar to a parameterized cell (pcell). The standard vias defined in the technology
can be considered as the super-masters. When a via of a certain configuration is requested, a “sub-
master” cell for that configuration is created in memory, if it hasn’t been created previously. The
instances of the via will reference that sub-master. Like pcells, the masters are not written to disk.
Instead, when a file containing via placements is read, the via sub-masters are created in memory as
needed.

An exception is when shipping a layout to another system, such as to a mask vendor. The Export
Control panel from the Convert Menu is used for this purpose. If the Strip For Export check box
is checked or equivalently if the StripForExport variable is set, which should be true in this situation, the
via (and pcell) sub-masters are included in the layout file. The foreign system will see these as ordinary
cells. The Include standard via cell sub-masters check box or equivalently the ViaKeepSubMasters
variable will likewise cause inclusion of the via sub-masters in output when set.

5.8. STANDARD VIAS 151

A standard via definition provides values for a number of parameters. Of these, the numerical values
can be changed by the user to form a variant. The layers involved are immutable. Each standard via
definition has a unique name assigned in the technology. This name can be any text which is suitable as
a cell name. One convention is to use the layer names of the two conductors, top layer first, separated
by an underscore, e.g., “M2_M1”. The parameters and their effects are described with the Via Creation
panel, from which the parameters can be set, and variants created and placed.

5.8.1 The Standard Via Property String

The stdvia property (number 7160) is applied to standard via instances and sub-masters. The OpenAccess
translator will transparently convert these to the corresponding OpenAccess forms when writing to
OpenAccess, and wvice-versa. A string with very similar format to the property string is used by the
OpenViaSubMaster script function. The property string syntax is described here.

There are actually two formats, that will be referred to as the old and new formats. The old format
uses OpenAccess keywords and is friendly for humans, the new format uses a code and is more compact.
Xic will always write the new format, but will read either format.

The property string consists of one or more space-separated text tokens. In either case, the first
token is the name of the standard via, as given in the definition in the technology file. The remaining
terms represent the numerical parameters that are different from the defaults given in the standard via
definition. There need not be any additional tokens, in which case the via has all default values. More
commonly, tokens follow the via name that provide alternate values.

In the old format, a token takes one of the forms

keyword : value
keyword : value , value

The value indicates an integer representing a dimension in internal units.

The new format assigns each numeric value a lower-case letter. A token consists of the letter, followed
immediately by the numeric value in nanometers. The number is printed in a format which removes
trailing zeros and decimal points.

| new format key letter(s) | old format keyword |

a CutWidth

b CutHeight

c CutRows

d CutColumns
e,f CutSpacing
g,h Layer1Enc
i,j Layer10£ff
k,1 Layer2End
m,n Layer20£ff
0,p OriginOff
q,r ImplantiEnc
s,t Implant2Enc

The new and old formats can not be mixed, all tokens must follow one format or the other. The
cases with two letters correspond to the keywords with two values, and the values represent dimensions
in the X and Y directions.

152 CHAPTER 5. PARAMETERIZED CELLS AND VIAS

Examples:

M2 M1 CutRows:2 CutColumns:2 LayerlEnc:40,60
M2_M1 c2 d2 h60

The two strings are equivalent if 1) the database resolution is 1000 so that the internal unit is
nanomenters, and 2) the default layer 1 enclosure in the X direction is 40nm.

When a sub-master is created, it is given a cell name that is the same as a new format property
string with the space stripped out, and the characters ‘—’ (minus) and ‘.’ (period) replaced by ‘m’ and
‘p’, respectively.

The OpenViaSubMaster script function takes a string in almost the same format, the only difference
is that the via name token is not present. Effectively, the via name is passed as the first argument,
and the rest of the string (if anything) is passed as the second argument. Either new or old format is
acceptable.

Chapter 6

The Help Menu: Obtain Program
Documentation

The commands in the Help Menu provide documentation and help to Xic users.

The commands found in the Help Menu are summarized in the table below. The table provides
the internal name for the command, and a brief description.

Help Menu
Label | Name | Pop-up | Function
Help help Help Viewer Show help, enter help mode
Multi-Window | multw | none Set multi-window help mode
About about | About Panel Show version info
Release Notes | notes | Text Editor Show release notes
Log Files logs File Selection Provide access to log files
Logging dblog | Logging Options | Set logging and debugging options

6.1 The Help Button: Obtain Help

Xic provides on-line context-sensitive help through activation of the Help button in the Help Menu.
When this button is pressed, Xic enters help mode, and (unless suppressed) the help window appears
with the default top-level topic. While help mode is active, information about commands and screen
objects can be obtained by clicking with the left mouse button (button 1) on menu buttons or other
screen objects. While in help mode, menu buttons will perform their normal functions rather than
bringing up help text if the Shift key is held while the menu entry is activated. Help mode can be exited
by pressing the Esc key while the pointer is in a drawing window, or by pressing the Help button a
second time, but these will not remove the help window from the screen. Help mode is also exited when
all help windows have been deleted, either with the Quit button in the help window File menu, or with
window manager functions. If a help window is brought up with the keyboard 'help command, Xic is
not in help mode, thus menu buttons will have their normal functions.

If the variable HelpDefaultTopic is set (with the !set command or otherwise) to an empty string,
pressing the Help button will not bring up the default top-level window. However, clicking on objects
and buttons will bring up help topics as usual. One can also set this variable to a URL or database
keyword, the content from which will appear in the initial window as the default topic.

153

154 CHAPTER 6. THE HELP MENU: OBTAIN PROGRAM DOCUMENTATION

Clicking on a colored HTML reference will bring up the text of the selected topic. If button 1 is
used to click, the text will appear in the same window. If button 2 is used to click, a new help window
containing the selected topic will appear.

The help system operates in one of two modes. The default mode is to use a single window for each
new topic generated by pressing a command or menu button. In the multi-window implementation,
which can be selected in Xic by selecting the Multi-Window Mode button in the Help Menu, or by
setting the boolean variable HelpMultiWin with the !set command, a separate window is brought up for
each press of a command button or menu item while in help mode. In either case, clicking on a link may
or may not produce a new window, depending upon whether button 1 or button 2 was clicked.

Text shown in the viewer that is not part of an image can be selected by dragging with button 1,
and can be pasted into other windows in the usual way.

The viewer can be used to display any text file or URL. In Xic and its derivatives, pressing the
question mark key (“?”) will prompt the user for text to display. The !help command has the same
effect. In WRspice, the text to display can follow the “help” command keyword on the command line.
The name given to the command, or to the Open command in the viewer’s File menu, can be

e A keyword for an entry in the help database.

e A path to a file on the local machine. The file can be an image in any standard format, or HTML
or plain text.

e An arbitrary URL accessible through the internet.

If the given name can be resolved, the resulting page will be displayed in the viewer. Also, the HTML
viewer is sensitive as a drop receiver. If a file name or URL is dragged into the viewer and dropped, that
file or URL is read into the viewer, after confirmation.

The ability to access general URLs should be convenient for accessing information from the internet
while using Xic and WRspice. The prefix “http://” must be provided with the URL. Thus, for example,

help http://wrcad.com

will bring up the Whiteley Research web page in Xic or WRspice. The links can be followed by clicking
in the usual way. Of course, the computer must have internet access for web pages to be accessible.

Be advised, however, that the “mozy” HTML viewer used in Unix/Linux releases is HTML-3.2
compliant with only a few HTML-4.0 features implemented, and has no JavaScript, Java, or Flash
capabilities. A few years ago, this was sufficient for viewing most web sites, but this is no longer true.
Most sites now rely on css styles, JavaScript, and other features not available in mozy. Most sites are
still readable, to varying degrees, but without correct formatting.

The given URL is not relative to the current page, however if a ‘4’ is given before the URL, it will be
treated as relative. For example, if the viewer is currently displaying http://www.foo.bar, if one enters
“/dir/file.html”, the display will be updated to /dir/file.html on the local machine. If instead
one enters “+/dir/file.html”, the display will be loaded with http://www.foo.bar/dir/file.html.

The HTTP capability imposes some obvious limitations on the string tokens which can be used in
the help database. These keywords should not use the ‘/’ character, or begin with a protocol specifier
such as “http:”.

HTML files on a local machine can be loaded by giving the full path name to the file. Relative
references will be found. HTML files will also be found if they are located in the help path, however

6.1. THE HELP BUTTON: OBTAIN HELP 155

relative references will be found only if the referenced file is also in the help path. If a directory is
referenced rather than a file, a formatted list of the files in the directory is shown.

If a filename passed to the viewer has one of the following extensions, the text is shown verbatim.
The (case insensitive) extensions for plain-text files are “.txt”, “.log”, “.scr”, “.sh”, “.csh”, “.c”,
“.CC”’ “.Cpp”’ LL.h7’7 Lé‘py”7 “.tCl”, and “.tk”.

Holding Shift while clicking on an anchor that points to a URL which specifies a file on a remote
system will download the file. References to files with extensions “.rpm”, “.gz”, and other common
binary file suffixes will automatically cause downloading rather than viewing. When downloading, the
File Selection panel will appear, pre-loaded with the file name (or “http_return” if the name is
not known) in the current directory. One can change the saved name and the directory of the file to
be downloaded. Pressing the Download button will start downloading. A pop-up will appear that

monitors the transfer, which can be aborted with the Cancel button.

6.1.1 XicTools Update

The help system provides package management capability for the XicTools programs. Giving the keyword
:xt_pkgs

(note that the keyword starts with a colon) brings up a page listing the installed and available XicTools
packages, for the current architecture. This requires internet access and http connectivity to wrcad. com.

One can select packages to download and optionally install by clicking on the check boxes. There are
separate buttons to initiate downloading only, and downloading and installation. Package files, and the
latest wr_install script if downloading, are downloaded to the current directory. Once installed, these
files can be deleted.

The XicTools package management capability is available from the the internal help system in Xic
and WRspice, and from the stand-alone mozy help browser.

6.1.2 The HTML Viewer

The help viewer windows provide access to the help system topics, and can display general HTML and
image files.

There are three colored buttons in the menu bar of the viewer. The left-facing arrow button (back)
will return to the previous topic shown in the window. The right-facing arrow button (forward) will
advance to the next topic, if the back button has been used. The Stop button will stop HTTP transfers
in progress.

There are four drop-down menus in the menu bar: File, which contains basic commands for loading
and printing, Options, which contains commands for setting display attributes, Bookmarks, which
allows saving frequently used references, and Help which provides documentation.

The File menu contains the following command buttons.

Open
The Open button in the File menu pops up a dialog into which a new keyword, URL, or file name
can be entered.

156 CHAPTER 6. THE HELP MENU: OBTAIN PROGRAM DOCUMENTATION

Open File
The Open File button brings up the File Selection panel. The Ok button (green octagon) on
the File Selection panel will load the selected file into the viewer (the file should be a viewable
file). The file can also be dragged into the viewer from the File Selection panel.

Save
The Save button in the File menu allows the text of the current window to be saved in a file.
This functionality is also provided by the Print button. The saved text is pure ASCII.

Print
The Print button brings up a pop-up which allows the user to send the help text to a printer, or
to a file. The format of the text is set by the drop-down menu, with the current setting indicated
on the menu button. The choices are PostScript in four fonts (Times, Helvetica, New Century
Schoolbook, and Lucida Bright), HTML, or plain text. If the To File button is active, output
goes to that file, otherwise the command string is executed to send output to a printer. If the
characters “Y%s” appear in the command string, they are replaced with the temporary print file
name, otherwise the temporary file name is appended to the string, separated by a space character.

Reload

The Reload button in the File menu will re-read the input file and redisplay the contents. This
can be useful when writing new help text or HTML files, as it will show changes made to the input
file. However, if you edit a “.hlp” file, the internally cached offsets for the topics below the editing
point will be wrong, and will not display correctly. When developing a help text topic, placing it
in a separate file will avoid this problem. One can also use the !helpreset command to update
the file offset table. If the displayed object is a web page, the page will be redisplayed from the
disk cache if it is enabled, rather than being downloaded again.

Old Charset
The help viewer uses the UTF-8 character set, which is the current standard international character
set. However, older input sources may assume another character set, such as ISO-8859, that will
display some characters incorrectly. If the user observes that some characters are missing or wrong
in the display, setting this mode might help.

Make FIFO
This controls an obscure but unique feature. When the button is pressed, a named pipe, or FIFO, is
created in the user’s home directory. The name is “mozyfifo”, or if this name is in use, an integer
suffix is added to make the name unique. This is a special type of file, that has the property in
this case that text written to this “file” will be parsed and displayed on the viewer screen.

The feature was developed for use in the stand-alone mozy program, for use as a HTML viewer
for the mutt mail client. If an HTML MIME attachment is “saved” to the FIFO file, it will be
displayed in the viewer.

The FIFO will be destroyed if this toggle button is pressed a second time, or when the help window
exist normally. If the program crashes, the FIFO may be left behind and require manual removal.

Quit
The Quit button in the File menu removes the help window. This will exit help mode (where
clicking on a command button brings up help) if there are no other help windows visible. Pressing
the Help button in the Help Menu a second time or pressing the Esc key also exits help mode,
though the help windows remain visible.

The Options menu presents a number of configuration and visual attribute choices to the user.
These are described below.

6.1. THE HELP BUTTON: OBTAIN HELP 157

Save Config
The Save Config button in the Options will save a configuration file in the user’s home direc-
tory, named “.mozyrc”. This file is read whenever a new help window appears, and sets various
parameters, defaults, etc. This provides persistence of the options selected in the Options menu.
Without an existing .mozyrc file, changes are discarded. If the file exists, it will be updated
whenever a help window is dismissed.

Set Proxy
This button will create or manipulate a .wrproxy file in the user’s home directory, which will
provide a transport proxy url for internet access. The proxy will apply in all XicTools programs
when connecting to the internet.

The $HOME/.wrproxy file contains a single line giving the internet url of the proxy server. The
proxy server will be used to relay internet transactions such as checking for program updates,
obtaining data or input files via http or ftp transport, and general internet access.

One can create a .wrproxy file by hand with a text editor. The general form is
http://username: password@prozy.mydomain.com : port

The format must be http, https is not supported at present. The username and password if
needed are specified as shown, using the colon ‘:’ and at-sign ‘@’ as separators. The address can
be a numeric ip quad, or a standard internet address. The port number is appended following a
colon. No white space is allowed within the text.

When the menu button is pressed, a pop-up appears that solicits the proxy address. Here, the
address is the complete token, as described above, but possibly without the port. The port number
can be passed as a trailing number separated by white space, if it is not already given (separated
by a colon). If no port number is given, the system will assume use of port number 80.

4

If the entry area is empty, any existing .wrproxy file will be moved to “.wrproxy.bak” in the
user’s home directory, effectively disabling use of a proxy. The behavior will be identical if the
address consists of a hyphen ‘-’. An existing .wrproxy.bak file will be overwritten. If the hyphen
is followed by some non-space characters, the .wrproxy file will be moved to a new file where the
given characters serve as a suffix following a period. For example, if -ZZ is given, the new file would
be “.wrproxy.ZZ” in the user’s home directory. An existing file of that name will be overwritten.

If the argument consists of only a plus sign ‘+’, if a file named “.wrproxy.bak” exists in the user’s
home directory, it will be moved to .wrproxy. An existing .wrproxy will be overwritten. If the
‘+’ is followed by some non-space characters, the command will look for a file where the characters
are used as a suffix, as above, and if found the file will be moved to .wrproxy.

Only the .wrproxy file will provide a proxy url, the other files are ignored. The renamed files
provide convenient storage, for quickly switching between proxys, or no proxy.

Otherwise, if an address is given, the first argument must start with “http:” or an error will
result.

Search Database

The Search Database button in the Options menu brings up a dialog which solicits a regular
expression to use as a search key into the help database. The regular expression syntax follows
POSIX 1003.2 extended format (roughly that used by the Unix egrep command). The search is
case-insensitive. When the search is complete, a new display appears, with the database entries
which contained a match listed in the “References” field. The library functions which implement
the regular expression evaluation differ slightly between systems. Further information can be found
in the Unix manual pages for “regex”.

158 CHAPTER 6. THE HELP MENU: OBTAIN PROGRAM DOCUMENTATION

Find Text

The Find Text command enables searching for text in the window. A dialog window appears, into
which a regular expression is entered. Text matching the regular expression, if any, is selected and
scrolled into view, on pressing one of the blue up/down arrow buttons. The down arrow searches
from the text shown at the top of the window to the end of the document, and will highlight the
first match found, and bring it into view if necessary. The up button will search the text starting
with that shown at the bottom of the window to the start of the document, in reverse order.
Similarly, it will highlight and possibly scroll to the first match found. The buttons can be pressed
repeatedly to visit all matches.

Default Colors
The Default Colors button in the Options menu brings up the Default Colors panel, from
which the default colors used in the display may be set. The entries provide defaults which are
used when the document being displayed does not provide alternative values (in a <body> tag).
The defaults apply in general to help text.

The color entries can take a color name, as listed in the listing brought up with the Colors button,
or a numerical RGB entry in any common format. The entries are the following:

Background color
Set the default background color used.

Background image
If set to a path to an image file in any standard image format, the image is used to tile the
background.

Text color
The default color to use for text.

Link color
The default color to use for un-visited links.

Visited link color
The default color to use for visited links.

Activated link color
The default color to use for a link over which the user presses a mouse button.

Select color
The color to use as the background of selected text. This color can not be set from the
document.

Imagemap border color
The color to use for the border drawn around imagemaps. This color can not be set from the
document.

The Colors button brings up a panel which lists available named colors. Clicking on a name in
this panel selects it, and enters the name into the system clipboard. The “paste” operation can
then be used to enter the color name into an entry area. This may vary between systems, typically
clicking on an entry area with the middle mouse button will paste text from the clipboard.

Pressing the Apply button will apply the new colors to the viewer window. Pressing Dismiss or
otherwise retiring the panel without pressing Apply will discard changes. Changes made will not
be persistent unless the Save Config button has been used to create a .mozyrc file, as mentioned
above.

Set Font
The Set Font button in the Options menu will bring up a font selection pop-up. One can choose

6.1.

THE HELP BUTTON: OBTAIN HELP 159

a typeface from among those listed in the left panel. The base size can be selected in the right
panel. There are two separate font families used by the viewer: the normal, proportional-spaced
font, and a fixed-pitch font for preformatted and “typewriter” text. Pressing Apply will set the
currently selected font. The display will be redrawn using the new font.

In Xic, there are commands to set the font families:

lhelpfixed [family-sizel
lhelpfont [family-size]

The format of the family-size argument depends upon the version of the GTK toolkit employed.

Cache group

A disk cache of downloaded pages and images is maintained. The cache is located in the user’s
home directory under a subdirectory named “.wr_cache”. The cache files are named “wr_cache N"”
where Nis an integer. A file named “directory” in this directory contains a human-readable listing
of the cache files and the original URLs. The listing consists of a line with internal data, followed
by data for the cache files. Each such line has three columns. The first column indicates the file
number N. The second column is 0 if the wr_cacheN file exists and is complete, 1 otherwise. The
third column is the source URL for the file. The number of files saved is limited, defaulting to 64.
The cache only pertains to files obtained through HTTP transfer. This directory may also contain
a file named “cookies” which contains a list of cookies received from web sites.

A page will not be downloaded if it exists in the cache, unless the modification time of the page is
newer than the modification time of the cache file.

The Don’t Cache button in the Options menu will disable caching of downloaded pages and
images.

The Clear Cache button in the Options menu will clear the internal references to the cache.
The files, however, are not cleared.

The Reload Cache button in the Options menu will clear and reload the internal cache references
from the files that presently exist in the cache directory.

The Show Cache button in the Options menu brings up a listing of the URLs in the internal
cache. Clicking on one of the URLs in the listing will load that page or image into the viewer.
This is particularly useful on a system that is not continuously on-line. One can access the pages
while on-line, then read them later, from cache, without being on-line.

No Cookies

Support is provided for Netscape-style cookies. Cookies are small fragments if information stored
by the browser and transmitted to or received from the web site. The No Cookies button in
the Options menu will disable sending and receiving cookies. With cookies, it is possible to
view certain web sites that require registration (for example). It is also possible to view some
commerce sites that require cookies. There is no encryption, so it is not a good idea to send
sensitive information such as credit card numbers.

Images group

Image support is provided for gif, jpeg, png, tiff, xbm, and xpm. Animated gifs are supported as
well. Tmages found on the local file system are always displayed immediately (unless debugging
options are set in the startup file). The treatment of images that must be downloaded is set by
this button group in the Options menu. One and only one of these choices is active. If No
Images is chosen, images that aren’t local will not be displayed at all. If Sync Images is chosen,
images are downloaded as they are encountered. All downloading will be complete before the page
is displayed. If Delayed Images is chosen, images are downloaded after the page is displayed.
The display will be updated as the images are received. If Progressive Images is chosen, images

160 CHAPTER 6. THE HELP MENU: OBTAIN PROGRAM DOCUMENTATION

are downloaded after the page is displayed, and images are displayed in sections as downloading
progresses.

Anchor group
There are choices as to how anchors (the clickable references) are displayed. If the Anchor Plain
button in the Options menu is selected, anchors will be displayed with standard blue text. If
Anchor Buttons is selected, a button metaphor will be used to display the anchors. If Anchor
Underline is selected, the anchor will consist of underlined blue text. The underlining style can
be changed in the “mozyrc” startup file. One and only one of these three choices is active. In
addition, if Anchor Highlight is selected, the anchors are highlighted when the pointer passes
over them.

Bad HTML Warnings
If the Bad HTML Warnings button in the Options menu is active, messages about incorrect
HTML format are emitted to standard output.

Freeze Animations
If the Freeze Animations button in the Options menu is active, active animations are frozen at
the current frame. New animations will stop after the first frame is shown. This is for users who
find animations distracting.

Log Transactions
If the Log Transactions button in the Options menu is active, the header text emitted and
received during HTTP transactions is printed on the terminal screen. This is for debugging and
hacking.

The Bookmarks menu contains entries to add and delete entries, plus a list of entries. The entries,
previously added by the user, are help keywords, file names, or URLs that can be accessed by selecting
the entry. Thus, frequently accessed pages can be saved for convenient access. Pressing the Add button
will add the page currently displayed in the viewer to the list. The next time the Bookmarks menu is
displayed, the topic should appear in the menu. To remove a topic, the Delete button is pressed. Then,
the menu is brought up again, and the item to delete is selected. This will remove the item from the
menu. Selecting any of the other items in the menu will display the item in the viewer. The bookmark
entries are saved in a file named “bookmarks” which is located in the same directory containing the
cache files.

6.1.3 The Help Database

The XicTools help system uses a fast hashed lookup table containing cached file offsets to the entry
text. A modular database provides flexibility and portability. The files are located by default in the
directories named “help” under the library tree, which is usually rooted at /usr/local/xictools. Xic
and WRspice allow the user to specify the help search path through environment variables and/or startup
files. All of the files with suffix “.hlp” in the directories along the help search path are parsed, and
reference pointers added to the internal list, the first time the help command is issued in the application.
In addition, other types of files, such as image files, which are referenced in the HTML help text may
be present as well.

The help search path can be set in the environment with the variable XIC_HLP_PATH, and/or may
be set in the technology file. The information on a given keyword can be accessed at any time using the
“shell escape” command “!help keyword’ in the prompt window.

6.2. THE MULTI-WINDOW BUTTON: SET MULTI-WINDOW HELP MODE 161

The “.hlp” files have a simple format allowing users to create and modify them. Each help item is
indexed by a keyword which should be unique in the database. The help text may be in HTML or plain
text format. The file format is described in C.3.

6.1.4 Help System Forms Processing

There exists basic support for HTML forms. In Xic, HTML forms can be used as input sources for
scripts. More information is available in 18.14.

When the form “Submit” button is pressed, a temporary file is created which contains the form
output data. The file consists of key/value pairs in the following formats:

name=single_token
name="any text”

There is no white space around ‘=’, and text containing white space is double-quoted. Each assignment
is on a separate line.

The action string from the “<form ...>” tag determines how this file is used. The file is a temporary
file, and is deleted immediately after use. If the action string is in the form “action_local_zzzz”, then
the form data are processed internally.

If the full path for the action string begins with “http://” or “ftp://”, then the form data are
encoded into a query string and sent to the location (though it is likely an error for ftp). Otherwise, the
file will processed locally. This enables the output from the form to be processed by a local shell script
or program, which can be very useful. The command given as the action string is given the file contents
as standard input. The command standard output will appear in the HTML viewer window. Thus, one
can create HTML form front-ends for favorite shell commands and programs.

6.1.5 Help System Initialization File

When a help window pops up, an initialization file is read, if it exists. This file is named “.mozyrc” and
is sought in the user’s home directory. This file is not created automatically, but is created or overwritten
with the Save Config button in the Options menu of a help window. This need be done once only. It
should be done if a .mozyrc file exists, but it is from a release branch earlier than 3.3. Once a .mozyrc
file exists, it will be updated when leaving help, reflecting any setting changes.

Incidently “mozy” is the name of the stand-alone version of the HTML viewer/web browser available
on the Whiteley Research web site.

6.2 The Multi-Window Button: Set Multi-Window Help Mode

When the Multi-Window Mode button in the Help Menu is set, in help mode, clicking on a menu
item or screen object will pop up a new help window, rather than reusing a single existing window.

This menu item tracks the state of the HelpMultiWin variable.

162 CHAPTER 6. THE HELP MENU: OBTAIN PROGRAM DOCUMENTATION

6.3 The About Button: Program and Legal Info

The About button in the Help Menu brings up a text window which provides the Xic revision number
and legal information. This window also appears when the key sequence Ctrl-v is entered, with the
pointer in a drawing window.

6.4 The Release Notes Button: View Release Notes

The Release Notes button in the Help Menu brings up a text browser window loaded with the release
notes for the current Xic release.

The release notes are installed by default in the directory /usr/local/xictools/xic/docs, and Xic
searches this directory for the notes. Xic can be directed to look in a different directory in two ways.
First, the environment variable XIC_DOCS_DIR can be set to the directory to search. Second, the variable
DocsDir can be set (with the !'set command) to the directory to search. The release notes describe bugs
fixed and new features added to Xic, and should be read after a new release is installed. Also, they serve
as supplements to the manual between printings. By policy, all updated information contained in the
release note is incorporated into the help database for a given release.

6.5 The Log Files Button: Access Log Files

The Log Files button in the Help Menu brings up the File Selection panel pointing at the directory
containing the log files. ”Opening” one of the entries will bring up the File Browser loaded with the
selected file.

The log files are kept in a temporary directory which is created when Xic is started. On normal exit,
this directory is deleted, so if the user wishes to retain one or more of the log files, the files must be
copied to a safe place. If Xic terminates unexpectedly, the directory is retained, and therefor the files
are available for post-mortem debugging.

6.6 The Logging Button: Set Logging and Debugging Options

This Logging button in the Help Menu brings up the Logging Options panel, from which various
logging and debugging options can be set. Probably, there is not much here that would be of interest to
most users. Some users may find this useful for diagnosing problems, however.

The top half of the panel contains a number of check boxes, each with a description. Checking these
boxes enables a debugging mode for the described subsystem or feature. This may involve additional
consistency testing and messages. By default, these messages will go to the console window, unless a
path to a file is entered into the Message file entry area, in which case messages will be saved in that
file.

The bottom half of the panel enables logging output from the indicated subsystems, into the file
whose name is given. These files will be created in the log files area, which is a temporary directory that
is removed on normal program exit. The files in the log files area can be accessed with the Log Files
button in the Help Menu.

This panel can also be brought up with the (undocumented) !debug command.

6.6. THE LOGGING BUTTON: SET LOGGING AND DEBUGGING OPTIONS 163

Chapter 7

The Side Menu: Geometry Creation

Xic has a “side” menu of buttons, typically displayed along the left edge of the application main window,
next to the layer table. This menu contains buttons specific to editing, and is shown only when editing is
enabled (meaning that it never appears in the Xiv feature set). The content of the menu differs between
electrical and physical modes.

If the environment variable XIC_.MENU_RIGHT is set when Xic starts, the menu and layer table will
be placed along the right edge of the main application window. This might be more convenient for
left-handed users. If the XIC_HORIZ_.BUTTONS environment variable is set, the “side” menu buttons
will instead be arrayed horizontally across the top of the main application window, above the top button
menu.

This section describes in detail the commands available in the side menu in physical and electrical
modes. These include commands for geometry creation and other frequently used operations.

Again, the side menu is only visible when cell editing is possible.

Side menu commands are executed by clicking with button 1 on the buttons. Typing the first few
letters of the command name while pointing in a drawing window will also initiate a side menu command.
The characters typed are displayed in the key press buffer area to the left of the prompt line in the main
window, or in the upper-right corner of sub-window pop-ups. Commands can be exited by selecting the
same or another command in most cases, or by pressing the Esc key.

In the command descriptions, reference if often made to the “current transform”. This is a rotation,
reflection, and magnification specification for moved or copied objects, and for newly created subcells.
The current transform is set with the pop-up produced by the xform button in the side.

Reference is also made to “selected” objects. Objects are selected by clicking the left mouse button
(button 1) while pointing at the object, or by pressing and holding button 1 so that the object is enclosed
in the rectangle formed with the press and release locations. Selecting a second time will deselect the
objects, and all selected objects can be deselected with the desel button in the top button menu.
Selected objects are displayed with a blinking highlighted border. Objects can also be selected with the
!select command typed in the prompt area.

«y”
.

Reference is made to various commands that start with an exclamation point such as “!set”.
These commands can be entered from the keyboard. Since most of these commands are used infrequently,
they are not assigned command buttons. The most important of these commands is probably !set, since
this allows certain variables to be set which control the behavior of some side menu commands. These
“” commands are described in chapter 19.

164

165

The tables below summarize the command buttons provided in the side menus in physical and
electrical mode. Note that the side menu is different between physical and electrical modes, and that
the operation of some commands which appear in both may differ slightly. These differences are noted
in the descriptions. In the text, side menu commands are referenced by their internal names, since the
command buttons contain an icon and not a label.

The side menu is not available in the Xiv feature set, and is invisible when certain modes are in effect,
such as in CHD display mode, where editing is not allowed.

166 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

Physical Side Menu Electrical Side Menu

Icon Name Function Icon Name Function

xform | Set current transform xform | Set current transform

place | Place subcells place | Place subcells

label | Create/edit labels devs Show device menu

logo Create text object Shapes| (v cate outline object
menu

box Create rectangles wire Create wires

— || 52| A< ||l

polyg | Create polygons label | Create/edit labels

wire Create wires % erase | Erase geometry
style . | .

Set wire style break | Cut objects
ment wire sty Z Z rea u]

donut | Create disk with hole nodmp | Name wire nets

arc Create arcs subct | Set subcircuit contacts

round | Create disk objects symbl | Set symbolic mode
.+_

S R €O WP N = |2

sides | Set rounded granularity .|.+ terms | Show terminals

xor Exclusive-OR objects ": spcmd | Execute WRspice command
Z|Z break | Cut objects ‘ﬂ' run Run WRspice
% erase | Erase geometry ‘g deck Save SPICE file

EE put Paste from yank buffer E : :] plot Plot SPICE results

% spin Rotate objects ﬁ iplot | Set dynamic plotting

Table 7.1: Commands found in the side menu in physical and electrical modes.

7.1. THE ARC BUTTON: CREATE ARCS 167

7.1 The arc Button: Create Arcs

tr

The arc command button allows the user to create arcs on the current layer. The sides button, or
the Sides entry in the shapes menu in electrical mode, can be used to reset the number of segments
used to represent the circle containing the arc. Press button 1 first to define the center. Subsequent
presses, (or drag releases) define the inner and outer radii, the arc start angle, and the arc terminal
angle. In physical mode, if the arc path width is set to zero, a round disk is created, as with the round
button. If the angle given is 360 degrees, then the created figure is identical to that produced by the
donut button. In electrical mode, the arc function is entered through the arc entry in the menu brought
up with the shapes button. In this case, the arc path has no width, so that the inner and outer radii are
equal and not separately definable. Arcs have no electrical significance, but can be used for illustrative
purposes.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within a small distance. When snapped, a
small dotted highlight box is displayed. This makes it much easier to create abutting objects when the
grid snap spacing is very fine compared with the display scaling. This feature can be controlled from
the Edge Snapping group in the Snapping page of the Grid Setup panel.

In electrical mode, an arc is actually a wire, and as such should not be used on the SCED layer. If
the current layer is the SCED layer, the arc will be created using the ETC2 layer, otherwise the arc
will be created on the current layer. Although there is no error, arc vertices on the SCED layer are
considered in the connectivity establishment, leading to inefficiency. If the user insists on the arc being
on the SCED layer, the Change Layer command in the Modify Menu can be used to move it to that
layer.

If the user presses and holds the Shift key after the center location is defined, and before the perimeter
is defined by either lifting button 1 or pressing a second time, the current radius is held for x or y. The
pointer location of the Shift press defines whether x is held (pointer closer to the center y) or y is held
(pointer closer to the center x). This allows elliptical arcs to be generated. This similarly applies when
defining the outer radii, so that the inner and outer surfaces can have different elliptical aspect ratios,
though the outer radius must be larger than the inner radius at all angles.

The Ctrl key also provides useful constraints. Pressing and holding the Ctrl key when defining the
radii produces a radius defined by the pointer position projected on to the x or y axis (whichever is closer)
defined from the center. Otherwise, off-axis snap points are allowed, which may lead to an unexpected
radius on a fine grid. When defining the angles of arcs with the Ctrl key pressed, the angle is constrained
to multiples of 45 degrees. Ordinarily, the arc angle snaps to the nearest snap point.

When the command is expecting a mouse button press to define a radius, the value as defined by the
mouse pointer (in microns) is printed in the lower left corner of the drawing window, or the X and Y
values are printed if different. Pressing Enter will cause prompting for the value(s), in microns. If one
number is given, a circular radius is accepted, however one can enter two numbers separated by space
to set the X and Y radii separately.

Similarly, the angles are displayed, and can be entered in this manner. Prompts can be obtained for
the start and end angles separately. The angle should be entered in degrees. Zero degress points along
the X axis, and positive angles advance clockwise.

168 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION
7.2 The box Button: Create Rectangles

2
i

The box command button allows creation of boxes (rectangles) on the currently selected layer. The
box can be defined by either clicking button 1 on two diagonal corners, or by pressing button 1 to define
the first corner, dragging, then releasing button 1 to define the second corner. The outline of the box
is ghost-drawn during creation. The new box will be merged with or clipped to existing boxes on the
same layer, unless this feature has been suppressed.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within two pixels. When snapped, a small
dotted highlight box is displayed. This makes it much easier to create abutting objects when the grid
snap spacing is very fine compared with the display scaling. This feature can be controlled from the
Edge Snapping group in the Snapping page of the Grid Setup panel.

In physical mode, boxes can also be created from the Show /Select Devices panel from the Device
Selections button in the Extract Menu. The Enable Measure Box button provides a means
of creating boxes of a specific size to match electrical requirements, for example to create rectangular
resistor bodies for a given resistance. Boxes can be created whether or not the electrical layer parameters
are used or present.

In physical mode while the box command is active, holding down the Ctrl key while clicking on a
subcell will paint the area of the subcell with the current layer.

In electrical mode, the box command is available by selecting the box function in the shapes menu.
If the current layer is the SCED layer, the box will be created using the ETC2 layer, otherwise the box
will be created on the current layer. It is best to avoid use of the SCED layer for other than active wires,
for efficiency reasons, though it is not an error. The Change Layer command in the Modify Menu
can be used to change the layer of existing objects to the SCED layer, if necessary. The outline style
and fill will be those of the rendering layer. Boxes have no electrical significance, but can be used for
illustrative purposes.

The box, erase, and xor commands participate in a protocol that is handy on occasion.

Suppose that you want to erase an area, and you have zoomed in and clicked to define the anchor,
then zoomed out or panned and clicked to finish the operation. Oops, the box command was active, not
erase. One can press Tab to undo the unwanted new box, then press the erase button, and the erase
command will have the same anchor point and will be showing the ghost box, so clicking once will finish
the erase operation.

The anchor point is remembered, when switching directly between these three commands, and the
command being exited is in the state where the anchor point is defined, and the ghost box is being
displayed. One needs to press the command button in the side menu to switch commands. If Esc is
pressed, or a non-participating command is entered, the anchor point will be lost.

7.3 The break Button: Cut Objects

7

7.4. THE DECK BUTTON: SAVE SPICE FILE 169

The break button is used to divide objects along a horizontal or vertical line. The command
operates on boxes, polygons, and wires. If one or more of those objects was previously selected, the
break command will operate on those selections. Otherwise, the user is asked to select objects to break.
The user is then asked to click to divide the selected objects along the break line, which is attached to
the pointer and ghost-drawn. The orientation of the break line is either horizontal or vertical, which can
be toggled by pressing either the / (forward slash) or \ (backslash) keys when the break line is visible.
The break command is useful when one wants to relocate or create a subcell from pieces of an existing
design.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within two pixels. When snapped, a small
dotted highlight box is displayed. This makes it much easier to create abutting objects when the grid
snap spacing is very fine compared with the display scaling. This feature can be controlled from the
Edge Snapping group in the Snapping page of the Grid Setup panel.

When the break command is at the state where objects are selected, and the next button press
would initiate the break operation, if either of the Backspace or Delete keys is pressed, the command
will revert the state back to selecting objects. Then, other objects can be selected or selected objects
deselected, and the command is ready to go again. This can be repeated, to build up the set of selections
needed.

At any time, pressing the Deselect button to the left of the coordinate readout will revert the
command state to the level where objects may be selected to break.

The undo and redo operations (the Tab and Shift-Tab keypreses and Undo/Redo in the Modify
Menu) will cycle the command state forward and backward when the command is active. Thus, the last
command operation, such as initiating the break by clicking, can be undone and restarted, or redone
if necessary. If all command operations are undone, additional undo operations will undo previous
commands, as when the undo operation is performed outside of a command. The redo operation will
reverse the effect, however when any new modifying operation is started, the redo list is cleared. Thus,
for example, if one undoes a box creation, then starts a break operation, the “redo” capability of the
box creation will be lost.

7.4 The deck Button: Save SPICE File

k=

The deck command, available only in electrical mode, creates a SPICE file of the current circuit
hierarchy. The file name is prompted for, as is an analysis string. If an analysis string is given, it will be
included in the SPICE file after prepending a ‘.’; unless it happens to start with “run”, in which case it
is ignored. If a plot string has been created with the plot command, it will also be included as a .plot
line.

Unless the variable SpiceListAll is set (with the !set command), only devices and subcircuits that
are “connected” will be included in the SPICE file. A device or subcircuit is connected if any of the
following is true:

e The subcircuit has a global node.

e The device or subcircuit has two or more non-ground connections.

e The device or subcircuit has one non-ground connection and one or more grounds.

170 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

e The device or subcircuit has one non-ground connection and no opens.

e The subcircuit has a non-ground connection.

Note that it is possible for a subcircuit to have no connections on the .subckt line, if it contains
a global node. For example, the subcircuit might consist of a decoupling capacitor to ground, from a
global power supply node (e.g., “vdd!”).

Node names will be assigned according to the node name mapping (see 7.11 currently in force.
After the new file is created, the user is given the option of viewing it in a File Browser window.

If the variable CheckSolitary is set (with the !set command) then a warning will be issued if nodes
are found with only one connection.

7.5 The devs Button: Device Menu

+

The devs button appears only in electrical mode, and pressing this button will toggle the display of
the device selection menu.

There are three styles of the device menu. The default style contains a menu bar with four entries:
Devices, Sources, Macros, and Terminals. Each brings up a sub-menu containing names of library
“devices”, that fall into each category.

The second menu style is similar, but the menu bar contains the first letter of the device name (not
the SPICE key).

In either of these styles, pressing and holding button 1 while the pointer is over one of the menu bar
buttons will pop up a menu of device names. Moving the pointer down the menu will highlight the entry
under the pointer. A selection can be made by releasing the button.

The third style is the pictorial menu, which displays the schematic symbol of each available device,
in alphabetical order. Clicking on one of the device images will establish the selection.

Each menu style contains a button from which the style can be cycled.

After a selection is made, the device symbol will be ghost-drawn and attached to the pointer, and
the device will be placed at positions where the user clicks in the drawing windows. The device is
positioned such that the reference terminal is located at the point where the user clicked. Devices are
placed according to the current transform, which is defined from the pop-up produced by the xform
button in the side menu.

When the menu becomes active, the current transform is cleared. The current transform is saved
in Register 0 and cleared when switching between devices to place or upon pressing the Desel button.
Pressing the Forward Slash button swaps the current and saved transforms.

The devices available and other details depend upon the definitions in the device library file. By
default, this file is named “device.lib”, and is located in the installation startup directory, but this
can be superseded by a custom file of the same name which is found in the library search path ahead of
the default file.

The present device menu style tracks, and is tracked by, the DevMenuStyle variable. This variable
can be set (with the !set command) to an integer 0-2. If 0 or unset, the categorized layout is used. If

7.5. THE DEVS BUTTON: DEVICE MENU 171

1, the alphabetized variation is used, and 2 specifies the pictorial menu. This variable tracks the style
of the menu, and resets the style when set.

The following table lists the devices found in the device library file supplied with Xic.

Name \ Description
Contact Devices

gnd Ground Contact

gnde Alternative Ground Contact

tbar Contact Terminal
’ tblk \ Alternative Contact Terminal ‘
’ tbus \ Bus Contact Terminal ‘

SPICE Devices

res Resistor

cap Capacitor

ind Inductor

mut Mutual Inductor

isrc Current Source

vsrc Voltage Source

dio Junction Diode

1j Josephson Junction

npn NPN Bipolar Transistor

pnp PNP Bipolar Transistor

njf N-Channel Junction FET

pjf P-Channel Junction FET

nmosl | N-Channel MOSFET, 4 Nodes
pmosl | P-Channel MOSFET, 4 Nodes
nmos N-Channel MOSFET, 3 Nodes
pmos P-Channel MOSFET, 3 Nodes
nmes N-Channel MESFET
pmes P-Channel MESFET

tra Transmission Line
Itra Transmission Line (LTRA Compatible)
urc Uniform RC Line
vees Voltage-Controlled Current Source
VCvs Voltage-Controlled Voltage Source
cces Current-Controlled Current Source
ccvs Current-Controlled Voltage Source
sw Voltage-Controlled Switch
csw Current-Controlled Switch

Misc.
opamp | Example Macro
vp Current Meter

The colors used in the pictorial device menu can be changed by setting the Special GUI Colors (see
A .8.3) listed below. This can be done in the technology file, or with the !setcolor command.

172 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

variable purpose default
GUIcolorDvBg | background | gray90
GUIcolorDvFg | foreground | black
GUIcolorDvH1 | highlight blue
GUIcolorDvSl | selection gray80

7.5.1 Terminal Devices

The following are not “real” devices, though they appear in the device menu and can be placed in a
drawing. Their purpose is to establish connectivity.

Ground Device

The gnd device is used to connect to node 0, which is always taken as the reference (ground) node in
SPICE. This can be placed in the main circuit and subcircuits.

The device library may contain multiple, functionally identical “ground” devices, that differ only
visually. In the library, any device that has no name property and exactly one node property is taken as
a ground device.

Alternative Ground Device

The gnde device is used to connect to node 0, which is always taken as the reference (ground) node in
SPICE. This can be placed in the main circuit and subcircuits. This is functionally identical to the gnd
device, but differs visually.

Terminal Device

The tbar, tblk, ttri, and txbox are “terminal devices” from the default device library. These devices behave
identically, and differ only in appearance. Each device has an associated label (with text defaulting to
the device name) which can be changed by the user by selecting the label and pressing the label button
in the side menu. The label will supply a name, which will be applied to a connected net. All nets
connected to a terminal device with the same name are taken as being connected together.

This will not tie nets between the main circuit and subcircuits, or between subcircuits, unless the
terminal name is also a global net name. If not global, the scope is within the cell only. See 7.11 for
more information about net name assignments.

Internally, the device will reconfigure itself as a scalar or multi-contact device according to the label.
Older Xic releases provided a tbus terminal, which is no longer compatible.

The name applied to a net via a terminal device is handled identically to a name obtained from a
wire label.

Bus Terminal Device

The tbus terminal device was provided as a bus terminal in older Xic releases. It is no longer compatible
or supported, and must be replaced by a current terminal device in legacy schematics.

7.5. THE DEVS BUTTON: DEVICE MENU 173

7.5.2 SPICE Devices

These devices correspond to element lines in SPICE output. In general, they reflect the generic SPICE
syntax.

Resistor Device

The res device is a two-terminal resistor. Typically, a value property is added to specify resistance.
Alternatively, a model property can be added to specify a resistor model. If a model property is assigned,
then a param property can be used to supply the geometric or other parameters.

The ‘4’ symbol in the representation accesses a branch property that returns a hypertext expression
consisting of the voltage across the resistor divided by the resistance in ohms, yielding the current
through the resistor. The ‘O’ that follows the resistance is the ‘ohms’ unit specifier, and not an extra
Zero.

Capacitor Device

The cap device is a two-terminal capacitor. Typically, a value property is added to specify capacitance.
Alternatively, a model property can be added to specify a capacitor model. If a model property is
assigned, then a param property can be used to supply the geometric parameters. In either case, the
param property can be used to provide initial conditions.

The ‘4’ symbol in the representation accesses a branch property that returns a hypertext expression
consisting of the capacitance value times the time-derivative of the voltage across the capacitor, yielding
the capacitor current.

Inductor Device

The ind device is a two-terminal inductor. A value property should be added to specify inductance. A
param property can be used to provide initial conditions.

The ‘4’ symbol in the representation accesses a branch property that returns a hypertext link to the
inductor current vector.

Mutual Inductor

The mut device provides support for mutual inductors. The mut device is never placed. When the
mut device is selected in the device menu, rather than selecting a device for placement as do the other
selections, a command mode is entered which allows existing inductors to be selected into mutual inductor
pairs.

When the mut device is selected, an existing pair of coupled inductors (if any have been defined) is
shown highlighted, and the SPICE coupling factor printed. The arrow keys cycle through the internal list
of coupled inductor pairs, or a pair may be selected by clicking on one of the inductors or the coefficient
label with button 1. At any time, pressing the ‘a’ key will allow addition of a mutual inductor pair. The
same effect is obtained by clicking on a non-mutual inductor with button 1. The user is asked to click
on the two coupled inductors (if ‘a’ entered or there are no existing mutual inductors), or the second
inductor (if the user clicked on an inductor), and then to enter the coupling factor. The coupling factor

174 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

can be any string, so as to allow shell variable expansion in WRspice, but if it parses as a number it must
be in the range between -1 and 1.

Pressing the ‘d’ key will delete the mutual inductance specification for the two inductors currently
shown.

Pressing the ‘k’ key will prompt for a new value of the coupling factor for the mutual inductors
shown, as will clicking on the coefficient label in a drawing window. When entering the coefficient
string, one can enter either the form name=coef_string, or simply the coefficient string. In the first case,
the name will provide an alternate fixed name for the mutual inductor in SPICE output. This can be
any alphanumeric name, but should start with ‘k’ or ‘K’ for SPICE. If no name is given, Xic will assign
a name consisting of K followed by a unique index integer.

One can also change the coefficient string and/or name with the label button in the side menu.
Again, the label text can have either of the forms described above.

Pressing the Esc key terminates this (and every) command. One can back out of the operation if
necessary with Tab (undo), as usual.

Current Source

The isrc device is a general current source. A value and/or param property can be added to specify the
value, function, or other parameters required by the source.

The arrow head in the representation accesses a branch property that returns a hypertext link to
the current in the form “@namelc]”. A .save line for this vector is automatically added to the SPICE
output.

Voltage Source

The vsrc device is a general voltage source. A value and/or param property can be added to specify the
value, function, or other parameters required by the source.

The ‘+’ symbol in the representation accesses a branch property that returns a hypertext link to the
current vector when clicked on.

Current Meter

In SPICE, voltage sources are often used as “current meters”, as the current through a voltage source
is saved with the simulation result vectors, and can be plotted or printed. The vp device is actually
a voltage source (identical to a vsrc device) however the symbol size is tiny, so that it can be more
easily added to an existing schematic for use as a current meter. The symbol contains a hot spot in the
representation that accesses a branch property that returns a hypertext link to the current vector when
clicked on.

Junction Diode

The dio device is a junction diode. A model property should be added to specify a diode model. A param
property can be added to specify additional parameters.

The diode contains no hidden targets.

7.5. THE DEVS BUTTON: DEVICE MENU 175

Josephson Junction

The jj device is a Josephson junction. A model property should be added to specify a Josephson junction
model. A param property can be added to specify additional parameters.

The ‘+’ symbol in the representation accesses the phase node of the Josephson junction. The “volt-
age” on this node is equal to the junction phase, in radians.

NPN Bipolar Transistor

The npn device is an npn bipolar transistor. A model property should be added to specify a bipolar
transistor model. A param property can be added to specify additional parameters.

The bipolar transistor contains no hidden targets.

PNP Bipolar Transistor

The pnp device is a pnp bipolar transistor. A model property should be added to specify a bipolar
transistor model. A param property can be added to specify additional parameters.

The bipolar transistor contains no hidden targets.

N-Channel Junction FET

The njf device is an n-channel junction field-effect transistor. A model property should be added to
specify a JFET model. A param property can be added to specify additional parameters.

The JFET contains no hidden targets.

P-Channel Junction FET

The pjf device is a p-channel junction field-effect transistor. A model property should be added to specify
a JFET model. A param property can be added to specify additional parameters.

The JFET contains no hidden targets.

N-Channel MOSFET, 4 Nodes

The nmosl device is a 4-terminal n-channel MOSFET (drain, gate, source, bulk). A model property
should be added to specify a MOS model, suitable for 4-terminal devices. Some of the MOS models
provided in WRspice, for SOI devices, use more than four terminals and will not work with this device.
It is left as an exercise for the user to create a modified device suitable for use with these models. A
param property can be added to specify additional parameters.

This device contains no hidden targets.

176 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

P-Channel MOSFET, 4 Nodes

The pmosl device is a 4-terminal p-channel MOSFET (drain, gate, source, bulk). A model property
should be added to specify a MOS model, suitable for 4-terminal devices. Some of the MOS models
provided in WRspice, for SOI devices, use more than four terminals and will not work with this device.
It is left as an exercise for the user to create a modified device suitable for use with these models. A
param property can be added to specify additional parameters.

This device contains no hidden targets.

N-Channel MOSFET, 3 Nodes

The nmos device is an n-channel MOSFET variation that contains three visible nodes (drain, gate,
source). The bulk node is connected to an internal global node named “NSUB”. To use this device, the
circuit should contain a voltage source tied to a terminal device with label “NSUB” to provide substrate
bias to all devices of this type. This simplifies the schematic by hiding the substrate connection to each
transistor.

A model property should be added to specify a MOS model, suitable for 4-terminal devices. Some of
the MOS models provided in WRspice, for SOI devices, use more than four terminals and will not work
with this device. It is left as an exercise for the user to create a modified device suitable for use with
these models. A param property can be added to specify additional parameters.

This device contains no hidden targets.

P-Channel MOSFET, 3 Nodes

The pmos device is a p-channel MOSFET variation that contains three visible nodes (drain, gate, source).
The bulk node is connected to an internal global node named “PSUB”. To use this device, the circuit
should contain a voltage source tied to a terminal device with label “PSUB” to provide substrate bias
to all devices of this type. This simplifies the schematic by hiding the substrate connection to each
transistor.

A model property should be added to specify a MOS model, suitable for 4-terminal devices. Some of
the MOS models provided in WRspice, for SOI devices, use more than four terminals and will not work
with this device. It is left as an exercise for the user to create a modified device suitable for use with
these models. A param property can be added to specify additional parameters.

This device contains no hidden targets.
N-Channel MESFET

The nmes device is an n-channel MESFET. A model property should be added to specify a MESFET
model. A param property can be added to specify additional parameters.

The MESFET contains no hidden targets.
P-Channel MESFET

The pmes device is a p-channel MESFET. A model property should be added to specify a MESFET
model. A param property can be added to specify additional parameters.

7.5. THE DEVS BUTTON: DEVICE MENU 177

The MESFET contains no hidden targets.

Transmission Line

The tra device is a general transmission line. In WRspice, this can be lossy or lossless, and may access a
model. In other versions of SPICE, this is a lossless line with no model. A model property can be added
to specify a transmission line model. A param property can be added to specify additional parameters.

The transmission line contains no hidden targets.

Transmission Line (LTRA compatibility)

The ltra device is a general transmission line. In WRspice, this can be lossy or lossless, and is basically
the same as the tra device, but defaults to a convolution approach if lossy. In other versions of SPICE,
this is a lossy line that requires a model. A model property can be added to specify a transmission line
model. A param property can be added to specify additional parameters.

The transmission line contains no hidden targets.

Uniform RC Line
The urc device is a lumped-approximation RC line. A model property should be added to specify a urc
model. A param property can be added to specify additional parameters.

The urc line contains no hidden targets.

Voltage-Controlled Current Source

The vees device is a voltage-controlled dependent current source. A value and/or param property can be
added to specify the gain, or other parameters required by the dependent source. Since all four nodes
are specified, the two-node variants supported by WRspice are not supported by this device.

The VCCS contains no hidden targets.

Voltage-Controlled Voltage Source

The vevs device is a voltage-controlled dependent voltage source. A value and/or param property can be
added to specify the gain, or other parameters required by the dependent source. Since all four nodes
are specified, the two-node variants supported by WRspice are not supported by this device.

The VCVS contains no hidden targets.

Current-Controlled Current Source

The cccs device is a current-controlled dependent current source. A devref property can be used to
specify the name of the controlling voltage source or inductor in the common case. A value and/or
param property should be added to specify gain, or other parameters required by the dependent source.
This device supports all of the variants supported in WRspice.

178 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION
The CCCS contains no hidden targets.

Current-Controlled Voltage Source

The ccvs is a current-controlled dependent voltage source. A devref property can be used to specify the
name of the controlling voltage source or inductor in the common case. A value and/or param property
should be added to specify the gain, or other parameters required by the dependent source. This device
supports all of the variants supported in WRspice.

The CCVS contains no hidden targets.

Voltage-Controlled Switch
The sw device is a voltage-controlled switch. A model property should be added to specify a switch
model. A param property can be added to specify additional parameters.

This device contains no hidden targets.

Current-Controlled Switch

The csw device is a current-controlled switch. A devref property must be used to specify the name of the
controlling voltage source or inductor. A model property should be added to specify the switch model.
A param property can be added to specify additional parameters.

This device contains no hidden targets.

Example Opamp Macro

The opamp device is an example “black box” device that expands into a subcircuit. It has a predefined
model parameter which gives the subcircuit name (which is resolved in the model library). No properties
are required.

This device contains no hidden targets.
7.6 The donut Button: Create Donut Object

&

The donut button appears only in physical mode. It is used to create a ring-like polygon. The
number of segments used to approximate a circle can be altered with the sides command.

If the user presses and holds the Shift key after the center location is defined, and before the perimeter
is defined by either lifting button 1 or pressing a second time, the current radius is held for x or y. The
location of the Shift press defines whether x is held (pointer closer to the center y) or y is held (pointer
closer to the center x). This allows elliptical donuts to be generated. This similarly applies when defining
the outer radii, so that the inner and outer surfaces can have different elliptical aspect ratios, though
the outer radius must be larger than the inner radius at all angles.

7.7. THE ERASE BUTTON: ERASE OR YANK GEOMETRY 179

The Ctrl key also provides useful constraints. Pressing and holding the Ctrl key when defining the
radii produces a radius defined by the pointer position projected on to the x or y axis (whichever is closer)
defined from the center. Otherwise, off-axis snap points are allowed, which may lead to an unexpected
radius on a fine grid.

When the command is expecting a mouse button press to define a radius, the value as defined by the
mouse pointer (in microns) is printed in the lower left corner of the drawing window, or the X and Y
values are printed if different. Pressing Enter will cause prompting for the value(s), in microns. If one
number is given, a circular radius is accepted, however one can enter two numbers separated by space
to set the X and Y radii separately.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within two pixels. When snapped, a small
dotted highlight box is displayed. This makes it much easier to create abutting objects when the grid
snap spacing is very fine compared with the display scaling. This feature can be controlled from the
Edge Snapping group in the Snapping page of the Grid Setup panel.

If the SpotSize variable is set to a positive value, or the MfgGrid has been given a positive value in
the technology file, tiny round and donut figures are constructed somewhat differently. the figure is con-
structed somewhat differently. Objects created with the round and donut buttons will be constructed
so that all vertices are placed at the center of a spot, and a minimum number of vertices will be used.
The sides number is ignored. This applies only to figures with minimum radius 50 spots or smaller;
the regular algorithm is used otherwise. An object with this preconditioning applied should translate
exactly to the e-beam grid. See E.11 for more information.

7.7 The erase Button: Erase or Yank Geometry

Rectangular regions of polygons, boxes, and wires can be erased or “yanked” with the erase button.
The user clicks twice or presses and drags to define the diagonal of the region to be erased. Selected
objects are not erased. Wires maintain a constant width, and are cut at the points where the midpoint
crosses the boundary of the erased area.

In physical mode, if the Shift key is held during the operation termination (click or button release),
there is no erasure, however the pieces that would have been erased are “yanked”, i.e., added to the
yank buffer. The pieces are also added to the yank buffer when actually erased. The yank buffer chain
has a depth of five, meaning that the contents of the last five yanks/erasures are available for placement
with the put command.

Geometry in “foreign” windows can be yanked. These are physical-mode sub-windows showing a
different cell than the current cell being edited (as showing in the main window). The foreign window
is never erased (i.e., holding Shift is not necessary), but the structure that would be erased is added to
the yank buffer. Thus, one can quickly copy a rectangular area of geometry from another cell into the
current cell, by yanking with erase and placing with the put command (below erase in the side menu).

The SpaceBar toggles “clip mode”. When clip mode is active, for objects that overlap the rectangle
defined with the mouse, instead of erasing the interior of the rectangle as in the normal case, the material
outside of the rectangle will be erased instead. The overlapping objects will be clipped to the rectangle.
This applies whether erasing or yanking, again the yank buffer will acquire the pieces that would (or
actually do) disappear in an erase operation.

180 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

When the Ctrl key is held before the box is defined, clicking on a subcell will cause the subcell’s
bounding box to be used as the rectangle. Thus, objects can be easily clipped to or around the subcell
boundary. This applies when yanking as well. The standard erase is the inverse of the subcell paint
operation in the box command.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within two pixels. When snapped, a small
dotted highlight box is displayed. This makes it much easier to create abutting objects when the grid
snap spacing is very fine compared with the display scaling. This feature can be controlled from the
Edge Snapping group in the Snapping page of the Grid Setup panel.

The box, erase, and xor commands participate in a protocol that is handy on occasion.

Suppose that you want to erase an area, and you have zoomed in and clicked to define the anchor,
then zoomed out or panned and clicked to finish the operation. Oops, the box command was active, not
erase. One can press Tab to undo the unwanted new box, then press the erase button, and the erase
command will have the same anchor point and will be showing the ghost box, so clicking once will finish
the erase operation.

The anchor point is remembered, when switching directly between these three commands, and the
command being exited is in the state where the anchor point is defined, and the ghost box is being
displayed. One needs to press the command button in the side menu to switch commands. If Esc is
pressed, or a non-participating command is entered, the anchor point will be lost.

7.8 The iplot Button: Interactive Analysis Plotting

uf

The iplot command, available in electrical mode, is useful only if the WRspice program is available.
Operation is similar to the plot button, whereby a command string is generated through selection of
nodes and branches with the pointer. The command line can be edited in the usual way to generate, for
example, functions of the plot variables. Pressing the Enter key saves the command. When the iplot

button is active and a command has been saved, the plot is generated dynamically while a simulation,
initiated with the run command, is in progress.

The S and R buttons, to the left of the prompt area, can be used to save and restore prompt line
text in a set of internal registers.

Pressing the iplot button a second time will turn off the interactive plotting. Pressing iplot and
then Enter will turn the interactive plotting back on. Of course, the trace points and plotting command
can be modified before pressing Enter. In particular, if all prompt line text is deleted, pressing Enter
will delete the internally saved command string, and turn interactive plotting off. Pressing the iplot
button again will take as default text the string from the plot command, if any.

The command text and mark locations are saved with the cell data when written to disk, thus the
iplot command is persistent.

7.9. THE LABEL BUTTON: CREATE/EDIT LABELS 181

7.9 The label Button: Create/Edit Labels

T

The label button is used to create or modify a text label. Labels are abstract annotation objects
which do not appear in physical output. For physical text, use the logo command button.

If a label is selected before pressing the label button, then the selected label can be edited. Multiple
labels can be selected, and each will receive the new label text. If more than one label is being changed,
the command exits after the new text is entered on the prompt line, i.e., after Enter is pressed to
terminate text entry.

If only one label is being changed, on pressing Enter the new text is “attached” to the mouse pointer,
as for a new label. In this state, the text size, orientation, and justification can be changed as will be
described below. The user can either click in a drawing window to place the label at the click location
(effectively moving the selected label), or press Enter to update the selected label at the existing location.

This is the recommended way to change the size of a label: select it, press the label button, press
Enter to keep the same text, adjust the size with the arrow keys, then press Enter again to update the
label. This keeps the label in a standard size and aspect ratio which will match other labels. This would
not be the case if the Stretch command or operation was used instead.

If no label was initially selected, after the label text has been entered, the label will appear ghost-
drawn, attached to the mouse pointer. The text will be rotated or mirrored according to the current
transform, as set from the pop-up provided by the xform button in the side menu. Instances of the
label are placed where the user clicks in a drawing window.

Label text in entered in the prompt line. While editing, if the user clicks on an existing label in
a drawing widow which is contained in the current cell, the text of that label will be inserted at the
prompt line cursor. Hypertext entries (see refhypertext) in the label will be preserved. If the existing
label is a “long text” label (described below), the long text attribute will be lost, unless the prompt
line is empty before clicking on the label. Particularly in electrical mode, clicking on other objects in a
drawing window will insert text at the cursor position, as will be described. Pressing Enter terminates
the label text and will allow placement of copies of the new label.

The size and justification of the label can be adjusted with the arrow keys, before it is placed. The
arrow keys have the following effect:

Up enlarge by 2
Right enlarge by 10%
Down reduce by 2
Left reduce by 10%

The initial size of a label is determined by the present default label height, and the magnification of
the current drawing window. The default label height is 1.0 microns, which can be reset by setting the
LabelDefHeight variable to a different value. The default height is the smallest size available through
scaling with the arrow keys. Generally, Xic functions that create new labels will use the default label
height. The default height of one micron is too large for modern semiconductor processes, so one should
redefine LabelDefHeight in the technology file to a more suitable value, typically the minimum feature
size.

By default, the label is anchored at the lower left corner, though this justification can be changed
by holding the Shift key while pressing the arrow keys. The Left and Right arrows cycle through left,
center, and right justification. The Up and Down arrow keys cycle through bottom, center, and top

182 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

justification. Finally, holding the Ctrl key while pressing the arrow keys will change the current rotation
angle. The arrow keys implicitly cycle through the angle choices, with Up and Right cycling in the
opposite sense from Down and Left.

Labels are scalable, and can be stretched with the Stretch button in the Edit Menu or with button
1 operations.

Newlines can be embedded in the label text by pressing Shift-Enter. The displayed label will contain
line breaks at those points. The justification applies to the block, and line-by-line within the block.

Labels are shown in legible orientation (i.e., left to right or down to up) by default, independent of
the actual transformation. If the Label True Orient button in the Main Window sub-menu of the
Attributes Menu or the sub-window Attributes menu is set accordingly, labels will be shown in their
actual orientation.

Pressing the Delete key after the label text has been entered will repeat prompting for new label
text. Labels have fixed size as compared with layout geometry.

7.9.1 Device Property Labels

Labels are created internally for device properties in electrical mode. These labels can be moved, deleted,
and edited just as user-supplied labels. Once deleted, though, such labels can not be recreated except
by recreating the device, or by using the !regen command. The underlying property is not deleted, it
simply is not displayed in a label.

These labels can be “hidden” by clicking on the label text with button 1 with the Shift key held.
This replaces the label text with a small box icon. Shift-clicking the icon will redisplay the text. This
can be useful when long labels obscure other features. See 7.9.7 for more information.

Labels can be edited by selecting the label before pressing the label button. If the label was generated
for a property in electrical mode, the underlying property is also changed. This is a quick way to modify
device properties, without invoking the Properties command button in the Edit Menu.

7.9.2 Wire Net Name Labels

Similar to the property labels, electrical wires that participate in schematic connectivity can have a
bound label that provides a name for the net containing the wire.

Unlike the device labels, wire net labels are created by the user. If the label command is started
with a single selected wire on an electrically-active layer, the label created will be bound to that wire.
Thus, to create a label for a wire, select the wire, press the label button in the side menu, and create
the label. These labels can exist on any layer.

Once created, these labels can be edited in the same manner as property labels, i.e., select the label
and enter the label command by pressing the side menu label button.

7.9.3 Ctrl-a and Ctrl-p

In electrical mode, outside of any command, pressing Ctrl-a will cause the associated labels of any
selected device or wire to also become selected. If labels are selected, then pressing Ctrl-a will cause
their associated device or wire to also become selected. The associated labels can be deselected by

7.9. THE LABEL BUTTON: CREATE/EDIT LABELS 183

pressing Ctrl-p. This is useful for determining which labels are associated with a given device or wire,
and vice-versa.

7.9.4 Spicetext Labels

In electrical mode, for efficiency reasons it is best not to use the SCED layer for labels. If the current
layer is the SCED layer, a new label will instead be created using the ETCI layer. If for some reason a
label is required on the SCED layer, the Change Layer command in the Modify Menu can be used
to move an existing label to the SCED layer.

In electrical mode, labels can be used to enter arbitrary text into the SPICE output. There are two
methods to achieve this. In addition, the Spicelnclude variable can be used to add a file inclusion to the
SPICE output.

If an electrical layer named “SPTX” exists, labels on this layer will be included, verbatim, as separate
lines in SPICE output, unless the label is a “spicetext” label (below). These labels are sorted by position,
top-to-bottom and left-to-right in output, and are placed ahead of the spicetext labels. A label on the
SPTX layer in the format of a spicetext label will be output as a spicetext label.

If the first word of the label is of the form
spicetextN

the label is a “spicetext” label, and the text which follows will be entered verbatim as a separate line
in the SPICE output. The spicetext labels can appear on any layer. The integer N, which is optional,
is a sorting parameter. If there are multiple labels containing SPICE text, they will be sorted by N
before being added to the SPICE output. Smaller N will appear earlier in the listing, with omitted N
corresponding to a value of zero. The spicetext lines are written as a contiguous block in the listing.

Any text which can be interpreted by the SPICE simulator in use can be added using these methods,
but erroneous syntax will of course cause errors as the SPICE text is sourced.

7.9.5 “Long Text” Capability

When editing or creating unbound labels, or labels for physical or certain electrical properties (value,
param, and other), there is provision for entering a block of text that will not be visible in the layout
or schematic. This avoids cluttering the screen with labels containing large blocks of text. Rather, a
symbolic form will be shown instead of the full text.

This same capability applies when adding or editing properties from the Property Editor provided
by the Properties button in the Edit Menu.

This capability is useful for properties which require a large block of text, such as a long PWL
statement in a value property for SPICE. It is not possible to edit a large text block in the prompt area,
and if displayed would cause the screen to be obscured or cluttered. The full text is added to SPICE
output, however, and is available as the property value in functions that query the value.

It is also useful for the spicetext labels, so that a block of text can be inserted into SPICE output,
rather than one line. Remember that the text entered into the window must begin with “spicetext”
and an optional integer, for the text to appear in SPICE output.

When entering a label where this “long text” capability applies, a small “L” button will appear to the
left of the prompt line, and this will be active when the text cursor is in the leftmost column. Pressing

184 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

this button will set the internal flag for “long text”, and open the text editor window for the text. Any
text that was previously entered in the prompt line will be added to the text editor window, or, if the
label was already in long text mode, the existing text will be shown in the editor.

If preexisting text was present on the prompt line when the L button was pressed, that text will
be loaded into the text editor, but any hypertext entries will be converted to plain text. The long text
blocks do not support the hypertext feature.

Pressing Ctrl-t has the same effect as pressing the L button when the button is visible and active.

From the editor window, one can edit the block of text, then press Save in the editor’s File menu
to complete the operation, or Quit to abort. The on-screen label will simply say “[text]” for a normal
“long text” property or non-associated label, or have the standard form for a script label (described
below);

The long text labels can be edited with the label editor, as can normal labels, by selecting the label
before pressing the label button. The prompt line will display “[text]” as a hypertext entry. Pressing
Enter or the L button will bring up the text editor loaded with the text associated with the label,
allowing editing.

To convert a long text label to a normal label, instead of bringing up the text editor, the hypertext
“[text]” entry can be deleted in the prompt line. Deleting the entry will place as much of the text block
as possible on the prompt line, and delete the text block and the association of the label or property as
a long text object.

7.9.6 Script Labels

Xic provides the ability to embed a script or script reference in a label, which is executed when the user
clicks on the label. These are created like any other label, but have the form

I''script [name=word] [path=path] L[script text...]

The leading token in the label must be “!!script” to indicate that the label text is executable.
This is followed by zero or more keyword/value pairs as shown, followed by the script text that will be
executed. The keywords and values must be separated by ‘=’ with no space. The value is a single token,
which should be double-quoted if it contains white space. These are optional.

The keywords have the following interpretations.

name=some_word
The script label is rendered on-screen as some_word surrounded by a box. If no name is given, the
word “script”” is shown.

path=some_path
If this is given, then the script to be executed is given by some_path and any executable statements
in the label are ignored. The some_path can be an absolute path to a script file, or can be the
name of a script file expected to be found in the script search path.

Any remaining text is executed as script commands, if path is not given. For short scripts, semicolons
can be used as command terminators in a single line. Otherwise, a text editor can be invoked on the
label string by pressing the “L” (long text) button when creating the label.

7.9. THE LABEL BUTTON: CREATE/EDIT LABELS 185

Clicking on a script label will execute the script, and not select the label as with normal labels. To
select a script label, hold Shift while clicking on the label, or drag over the label (area select). If a script
label is selected, it will not execute when clicked on, but rather be deselected.

For example, suppose that a user has a large layout, with a small section that the user often needs
to zoom into. The user can create a script label to perform the zoom operation. After zooming in, one
can note the position and estimate the width of the drawing window. Then, one would create a label
such as

I'!'script name=zoom Window(xz, y, width, GetWindow())

and place it somewhere convenient. The z, y, and width above of course represent the actual values (in
microns). Clicking on the label will always zoom to this area.

7.9.7 Label Size Issues

In electrical mode, property text labels can be displayed or “hidden”. If a label is hidden, the text is
not displayed, only a small box at the text reference point is shown.

Labels with text size longer than a certain length will be shown as hidden by default. Hidden labels
can be made visible, and wvice-versa by clicking on the label or small box with the Shift key held. The
label text can also be shrunk (with the Stretch command in the Modify Menu or with button 1
operations) to make it visible.

The label hidden status is persistent when the cell is saved in any format, however changing the
display status does not change the modified state of a cell, thus this can be done in IMMUTABLE cells.

It should be noted that the “real” bounding box of the label, which is used to set the cell bounding
box, is always the bounding box of the actual text. The hidden display mode is only available for the
labels that contain property strings in electrical mode. Hidden labels can be selected only over the
small box, and only the small box is highlighted. However, when moving or stretching, the entire “real”
bounding box is highlighted.

The size threshold can be changed with the Maximum displayed property label length entry
in the Window Attributes panel from the Set Attributes button in the Attributes Menu. Equiv-
alently, the variable LabelMaxLen can be set to an integer greater than 6 with the !set command. The
units are the width of a default-size character cell. In releases prior to 2.5.66, the default length was
32 default character size cells. In this and later releases, the value is 256 character cells. The larger
threshold makes the nondisplay of label text much less probable, as this feature has been confusing to
users.

Another way to obscure a long label is to convert it to a “long text” label.

To “hide” a label using the “long text” feature:

1. Select the label.
2. Press the side menu label button (with the black ‘T’ icon).

3. Press the gray L button that appears to the left of the prompt line. This will cause the text editor
to appear, loaded with the label text. If there is no L button, then the property can’t use long
text, which is true for properties that are “always” short, such as for device and model names.

4. In the text editor, press Save in the File menu. The editor will disappear, and the label displayed
on-screen will have changed to “[text]”.

186 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

To convert back to a normal label:

1. Select the long-text label (“[text]”).
2. Press the side menu label button (with the black 'T’ icon).

3. With the cursor under “[text]” on the prompt line, press the Delete key. The full label text will
appear on the prompt line.

4. Press Enter. The label will be shown normally.

Long property text labels can also be broken into multiple lines by adding embedded returns. These
are added with Shift-Enter while the string is being edited. Note that this generates newlines in the
SPICE output, so that in most cases the extra lines should begin with the “+” continuation character.

7.10 The logo Button: Create Physical Text

T

The logo command allows the creation of physical text and images for labeling, identification, etc.
Operation is similar to the label command, where the arrow keys alter text or image size, Shift-arrow
cycles through the justification choices, and Ctrl-arrow cycles through the rotation angles. By default,
the text is implemented with rounded-end wires in the current layer, using a vector font.

For rendering text, there are three font possibilities. The default font is a vector font which constructs
the characters using wire objects. The Manhattan font is a built-in bitmap font from which the characters
are constructed using Manhattan polygons. The Manhattan font is fixed-pitch with an 8X16 map. The
“pretty” font is one of the system fonts, which similarly creates characters constructed as Manhattan
polygons. Logic is applied to extract the “best” rendition from anti-aliased fonts, which do not have a
precisely defined shape. Some fonts may look better than others in this application.

While in the logo command and using the vector font, pressing the Ctrl-Shift-arrow key combinations
will adjust the path width; the Up and Right arrow keys increase the width, Down and Left arrows
decrease the path width.

The LogoPathWidth variable tracks the current path width setting. The LogoEndStyle variable tracks
the current end style setting.

Instead of a text label, the logo command can be used to place an image. The image must be provided
by a file in the XPM format. This is a simple ASCII bitmap format, commonly used in conjunction with
the X-windows system on Unix machines. Other types of bitmap files can be converted to XPM format
with widely available free software, such as the ImageMagick package. Several XPM files are supplied
in the help directory for Xic (located by default in /usr/local/xictools/xic/help), which illustrate
the format.

This feature is enabled in the logo command by giving the path of an XPM file, which must have a
“.xpm” suffix, as the text string. This will cause the image to be imported such that it can be scaled,
transformed, and placed, just like a normal label. The background color (the first color listed in the
XPM file) is taken as transparent. All other layers found in the XPM file are mapped to the current
layer. The image is rendered as a collection of Manhattan polygons.

Unlike in releases 3.0.11 and earlier, there is no attempt to limit feature sizes according to design
rules. The minimum size of a character is set by the internal resolution, while the maximum size is about

7.10. THE LOGO BUTTON: CREATE PHYSICAL TEXT 187

4 X .7 cm. Once the text is entered, the size and other attributes can be changed with the arrow keys,
and the text is placed where the user clicks in the drawing with button 1. The text can be reentered,
i.e., a new label or image file defined, if the Delete key is pressed.

Alternatively, a fixed ”pixel” size can be specified. In this case, the arrow keys will pan the display
window, and have no effect on the label or image size.

The default operation is to apply the text or image feature directly in the current cell, where the user
clicks. It is also possible to create a subcell containing the text, which is instantiated at the clicked-on
locations. This may be more efficient if there are many copies of the same label.

Note that use of the vector font may produce design rule violations, which are pretty much inevitable
due to the presence of acute angles in some characters. Use of the other fonts, which are rendered using
Manhattan polygons, can avoid design rule violations, if the “pixel” size is larger than the MinWidth
and MinSpace design rules for the layer. When physical text (or an image) is placed with the logo
command, interactive design rule checking is suppressed. The NoDRC flag can be set on the new label,
or the NDRC layer can be used, to permanently suppress DRC.

It is possible to change the font used for the logo command. The default font is set internally
by Xic, however individual characters or the whole font will be updated upon startup if a file named
“xic_logofont” is found along the library search path, which contains alternative character specifica-
tions.

7.10.1 The Logo Font Setup Panel

While the logo command is active, the Logo Font Setup panel is visible, though this can be dismissed
without leaving the logo command. The top of the panel provides three “radio” buttons for selecting the
font: Vector, Manhattan, and Pretty. The LogoAltFont variable tracks the choice in these buttons.

Below the Font choice buttons is the Define “pixel” size check box and numeric entry window.
When checked, the numeric entry area is enabled, and the value represents the size of a “pixel” used
for rendering the label or image, in microns. When checked, the arrow keys have no effect on label or
image size, instead they revert to their normal function of panning the display window. This feature is
tied to the LogoPixelSize variable, which when set to a real number larger than 0 and less than or equal
to 100.0 will define the “pixel” size used in the logo command.

There are two option menus in the Logo Font Setup panel which set the end style and path width
assumed in the wires used for constructing characters with the vector font. The user can set these
according to personal preference. Although rounded end paths may look better, they are somewhat less
efficient in terms of storage and processing, and are not handled uniformly (or at all) in some CAD
environments. For example, rounded-end wires may be converted to square ends when written as OASIS
data.

The Select Pretty Font button brings up the Font Selection panel, allowing the user to select
a system font for use as the “pretty” font. In the Font Selection panel, the user can select a font,
then press the Set Pretty Font button to actually export the choice. This will set the LogoPrettyFont
variable.

The Create cell for text check box, when checked, sets a mode where new labels and images are
instantiated as subcells rather than directly as geometrical objects. In addition to generating a master
cell in memory, a native cell file with the same name is written in the current directory. The boolean
variable LogoToFile tracks this state of this check box.

The name of the file used for the label is internally generated, and is guaranteed to be unique in the

188 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

current search path. The name consists of the first 8 characters of the label, followed by an encoding of
the various parameters related to the label. For a given label, the uniqueness of the file name prevents
recreating the same label file in a subsequent session.

The Dump Vector Font button will create a file containing the vector font (see C.1) currently
being used by the logo command. By default, the vector font uses the same character maps as the
vector font used to render label text on-screen. However, these maps can be overridden by definitions
from a file. The Dump Vector Font button can be used to dump the current set of character maps to
a file. Character maps from this file can be modified and placed in a file named “xic_logofont” in the
library search path, in which case they will override the internal definitions when producing vector-based
characters in the logo command.

7.11 The nodmp Button: Node (Net) Name Assignments

M

The nodmp button, which is available in the electrical mode side menu, will bring up the Node
(Net) Name Mapping panel which is used to display and alter the names used for “nodes” (single-
conductor wire nets) in the schematic, and in SPICE and other output. This name may be internally
generated, or may be derived from a terminal name, or may be assigned by the user. This panel is also
brought up by the Find Terminal button in the Setup page of the Extraction Setup panel, which
is obtained from the Setup button in the Extract Menu.

First, to facilitate the discussion that follows, some terminology will be introduced. See also the
section on wire net naming in 4.2.8.

scalar
Single-conductor wire nets, or “nodes” (from SPICE terminology) are referred to as “scalar” nets.
These are the actual circuit connections, which are compared in layout vs. schematic (LVS) testing.
Xic also allows multi-conductor (including single-conductor) “vector” and “bundle” nets. These
actually reference and organize the nodes, but do not provide actually connectivity, except through
name matching. The present Node (Net) Name Mapping panel applies only to the scalar nets.

associated name
A scalar wire net, or “node” may have “associated names”. These names derive from named
terminal devices which may be connected to the net, or from labeled wires which are connected to
the net. Both the terminal device and the labeled wire derive the net name from the text of an
associated label. The labels can be edited, which will change the text of the associated name. A
net may have any number of associated names.

cell terminal name
Every electrical contact point of a cell has a name. This name was assigned when the cell terminal
was created with the subct command button in the side menu, or if no name was given a default
name is used.

It is also possible to name cell contact terminals from the Edit Terminals command button in
the Setup page of the Extraction Setup panel. This panel is brought up with the Setup button
in the Extract Menu.

global names
Certain names are registered within Xic as “global names”, and are kept in an internal string table.

7.11. THE NODMP BUTTON: NODE (NET) NAME ASSIGNMENTS 189

These names are known at every level of the cell hierarchy. There is always at least one global
name defined, the ground node with name “0”.

Global names are easily created by the user, as any node name ending with an exclamation point
(‘1) is taken as a global name. For example, “vdd!” would be taken as a global name.

Global node names are also set with the DefaultNode global properties, in the device library file.
They may be used as default nodes in some devices. In particular, the “three terminal” nmos and
pmos devices included in the default library make use of this feature, defining global node names
“NSUB” and “PSUB” that connect to the device substrate.

assigned name
Names that are specified from the Node (Net) Name Mapping panel using the Map Name
button will be referred to as “assigned names”.

A wire net can clearly have a number of names associated with it. The actual name for the node will
be chosen according to the priorities listed below.

1. If a net has an associated name that matches a global name, that global name is used, and this
can not be overridden by the user.

If two or more global names match associated names in the net, the name chosen will be the one
earliest in ASCII lexicographic order. This situation is unlikely and probably represents a topology
error.

2. If a net is given an assigned name, that name will be used.

3. If a net contains a cell terminal, the cell terminal name will be used. It is possible that more than
one cell terminal is connected to the node, in which case the name chosen will be the one earliest
in ASCII lexicographic order.

4. If the net has an associated name, that name will be used. It is possible that more than one
associated name will be found, in which case the name chosen will be the one earliest in ASCII
lexicographic order.

5. The net will be given a name based on the internally-generated node number.

For names other than the internally generated node numbers, the name is predictable. The internally
generated numbers will change if the circuit is modified, or possibly for other reasons. Thus, if netlist
or SPICE output is to be used in another application, it may be important to assign names to nodes to
be referenced by name.

The Node (Net) Name Mapping panel contains two text listing windows. The left (node listing)
window lists all of the nets in the current cell schematic. An entry in the list can be selected by clicking
on the text with the mouse. When a net is selected in this list, the terminals to which the net connects
are listed by name in the right (terminal listing) window. Entries in the terminal listing can be selected
as well by clicking on the text with the mouse. In either window, the selected entry, if any, is highlighted.

There is a “grip” in the region separating the two text listings, which can be dragged horizontally to
change the relative widths of the windows.

The left column in the node listing contains the internal node numbers, which can change arbitrarily
if the circuit is modified. Entries in the second column are the mapped names, i.e., the names used in
SPICE and netlist files. If the second column entry is blank, no name could be found for the net, and
Xic will create a name from the node number for use in output. The third column will contain the letter

190 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

“Y” if the node has a name assigned by the user, and/or a “G” if the node name is that of a global node
(including ground). Both letters will appear if the user assigns a name that matches a global name,
which includes any name that ends with an exclamation point. The “G” nodes without Y can not be
renamed by the user.

When a node is selected in the left text window, the right text window lists terminals and other
features that are found in the selected net. This includes

e Device and subcircuit instance terminals.

e Named terminal devices. These start with a ‘T’ character, followed by a space, followed by the
name from the terminal label.

e Named wires. These start with ‘W’ followed by space and the name from the wire label.

e Cell contact terminal names.

The names used for device terminals are a concatenation of the device name and the terminal names
as supplied in the node properties in the device library file, if a name was given. If no name was given,
a default name is constructed as devicename_contactnum. That is, the device name, followed by an
underscore, followed by an internal index number for contacts of that device. The device name starts
with a letter which is the SPICE key for that device type. Subcircuits are similar, and the terminal
names begin with ‘X’.

In the electrical schematic drawing, when a net is selected in the node listing window, wire objects
that are included in the selected net are highlighted. Each of the device and subcircuit instance terminals
listed in the terminal listing area will have a small highlighting box drawn around its location. If one of
the terminals in the terminal listing is selected, that terminal will be displayed using highlighting.

The panel will cooperate closely with the physical extraction system when the Use Extract check
box is checked. This means that extraction/association will be performed as needed so that terminal
locations are correctly defined in the physical layout as well. In this case, a terminal selected in the
terminal list will be shown in physical layout windows, as well as the schematic. If the check box is
not checked, extraction data will be used if present when showing the terminal in layouts, but there
is no attempt to maintain currency. The Node (Net) Name Mapping panel is also available from
the Find Terminal button in the Extraction Setup panel in both physical and electrical modes, in
addition to the side-menu button in electrical mode.

When an entry in the terminal listing window is selected, the Find button, below the listing, is
un-grayed. Pressing the Find button will bring up a sub-window displaying the current cell, with the
selected terminal at the exact center of the display. One can press the numeric keypad + key repeatedly
to zoom in to the terminal location, and the terminal will remain centered. Further, if Use Extract is
set or the extraction state is current, the terminal will also be displayed and centered if the sub-window
is changed to physical mode.

When the Click-Select Mode button is pressed, a command state is entered whereby clicking on
a wire or contact point in a drawing window will select that net. This works a bit differently depending
on the state of the Use Extract check box. If the box is checked, the button will bring up the Path
Selection Control panel from the extraction system. This allows selection of conducting paths in the
layout windows by clicking on objects. The corresponding net will be selected in the node listing window,
with corresponding highlighting shown in schematic windows. One can also click on wires and terminal
locations in the schematic, and the clicked-on net will become selected. The corresponding conductor
group will be displayed highlighted in layout windows.

7.11. THE NODMP BUTTON: NODE (NET) NAME ASSIGNMENTS 191

With Use Extract not checked, the Path Selection Control panel will not appear, but clicking in
schematic windows will have similar effect. The system will once again use extraction data if available
to map button presses in layout windows to a conductor group and back to the coresponding electrical
net to be highlighted. However, there is no highlighting of the physical conductor group.

In either case, the clicked-on node will be shown selected in the node listing window, and scrolled into
view if necessary. The terminal listing window will show the selected net details as usual. Click-Select
Mode is exited if another command is started, or Esc is pressed, or the Click-Select Mode button
is pressed again, or, with Use Extract checked, the Path Selection Control panel is retired by any
means.

The Deselect button will deselect selections in the node listing window, and the corresponding
highlighting in the drawing windows. The terminal listing window becomes empty.

It is also possible to search for nets and terminals by name using the controls just above the two
listing windows. The two “radio” buttons select whether to search for node or terminal names. One
enters a “regular expression” into the text area. The button to the left of the text entry initiates the
search. A matching net is selected as is the matching terminal if searching for terminals. One can press
the button again to move to the next and subsequent matches. If there is no initial selection, perhaps
because Deselect was pressed, the search area starts at the top and extends toward the end of the
listing. If a net is selected, the search starts with the next item (terminal or net) after the selection end
extends toward the end.

The regular expression conforms to POSIX.1-2001 as an extended, case-ignored regular expression.
On a Linux system, “man grep” provides a good overview of regular expression syntax and capability.
However, one probably doesn’t need to know much more than

1. A given string will match any name containing the string, case insensitive.
2. The carat (‘*’) character matches the beginning of a name.

3. The dollar sign (‘$’) character matches the end of a name.

If the third column in the node listing window is not ‘G’, then an overriding name for the selected
node can be assigned with the Map Name button, but only while in electrical mode. To apply a name,
select a node in the node listing area, then press the Map Name button. A new name will be prompted
for in a pop-up window. The name can be any text token (white space is not allowed), however it is up
to the user to ensure that the name makes sense in the context of the output. For example, for SPICE
output, the node names must adhere to the rules for valid node names in SPICE. After pressing Apply,
the second column in the listing will be updated to show the new name, and the third column will show
“Y”. Again, this can only be done while in electrical mode, in physical mode the button remains grayed.

The node naming can actually modify circuit topology, which can be a powerful feature or a curse.
If two nets share a name, they will be merged, and the left window will reflect this. Thus, it is easy to
make connections using node name mapping that are not obvious when looking at the schematic. For
this reason, if the user is about to apply a duplicate name, a confirmation pop-up will appear. The user
is given the choice to back out of the operation, or continue.

The node name assignment works by association with a connection point in the net, equivalent to a
hypertext reference. This association persists if the object is moved, and is transferred to another device
or wire if the object is deleted, if possible. In some cases it may get lost, however, so an assigned name
may have to be reentered after the circuit is edited.

In electrical mode, an assigned name can be deleted by first selecting the node in the node listing
area, then pressing the Unmap button. The Unmap button is un-grayed only if the third column of

192 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

the selected node shows “Y” indicating that it has an assigned name. On pressing the button, the name
will revert to the default name. This may effectively change circuit topology by undoing the net merging
brought about through net name assignments. Again, this operation is available only in electrical mode.

The internal data structure representing node name mapping, and the listings, will be in one of two
states. Either devices and subcircuits with the nophys property will be included as normal devices and
subcircuits, or these will be ignored. In the latter case, if the nophys property has the “shorted” option,
the terminals will be effectively shorted together, which will obviously change the node numbering.

The current state is as set by the last function to generate the connectivity map. Functions in
the extraction system will always recognize the nophys properties, and build the map excluding these
devices but taking the “shorted” nophys devices as shorted. Then, the schematic will correspond to the
actual physical layout. Functions in the side menu which generate a SPICE listing will ignore nophys
properties and include all such devices in the net list. This produces a schematic appropriate for SPICE
simulation.

The Use nophys button is used to switch between these two representations, and the state of the
button will be reset if another function changes the state.

When the Use nophys button is pressed, devices and subcircuits with the nophys property set will
be included in the listings, just as “normal” devices. Their terminals will be listed in the terminals listing
window. The nophys property is ignored in this case, as will be true when a listing is being prepared for
SPICE output from functions in the side menu.

When the Use nophys button is not pressed, devices and subcircuits with the nophys property
will be ignored in the listings, and the node numbering will respect the “shorted” nophys properties.
Terminals from these devices and subcircuits will not be listed in the terminal listing window. This
mode is consistent with the usage by the extraction system.

7.12 The Place Button: Cell Placement Control Panel

L

The place button in the side menu brings up the Cell Placement Control panel which allows
instances of cells (subcells) to be added to the current editing cell.

When the Place button in the panel or the place button in the side menu is active (the two buttons
show the same status), the current master can be instantiated at locations where the user clicks (“place
mode”). The bounding box of the cell is ghost-drawn and attached to the pointer. The orientation and
size of the instance are set by the current transform. If the Cell Placement Control panel is dismissed
the place mode, if active, is exited. The place mode can be exited with the Esc key, or by pressing the
Place button (either one) a second time. The panel is not popped down when place mode is exited.

The substructure of cell instances being placed is highlighted to the depth shown in the main window.
This facilitates alignment with other objects. One can change the display depth to reveal more or less
of the substructure.

From the Open command in the File Menu, if one holds down Shift while selecting one of cells from
the history list, the Cell Placement Control panel will appear with that cell added as the current
master. This applies to cell names and not the “new” entry. This is a quick backdoor for instantiating
cells recently edited.

In electrical mode, when a connection point of a device or subcell is near another connection point,

7.12. THE PLACE BUTTON: CELL PLACEMENT CONTROL PANEL 193

it will snap to that location and a small dotted box will be drawn around the point. This facilitates
placement of devices and subcircuits in the schematic. While the Shift or Ctrl keys are held, this feature
is disabled.

Cells can be placed individually, or as arrays in physical mode. When the Use Array button is active,
cells will be placed as arrays, governed by the currently set array parameters. The array parameters
can be entered into the four text fields below, only when the Use Array button is active. Arrays are
allowed in physical mode only. If this button is not active, single cells are placed.

The array replication factors Nx and Ny can be set to any value in the range of 1 through 32767.
The upper limit is set by the GDSII file format, and is enforced by Xic to avoid portability problems.

The spacing values Dx and Dy are edge to adjacent edge spacing, i.e., when zero the elements will
abut. If Dx or Dy is given the negative cell width or height, so that all elements appear at the same
location, the corresponding Nx or Ny is taken as 1. Otherwise, there is no restriction on Dx or Dy except
that very large (unphysical) values can cause integer overflow internally.

The !array command can be used to convert existing instances into arrays, and to modify the array
parameters of existing arrays.

In physical mode, the reference point of the cell, which is the point in the cell located at the pointer,
can be set to either the cell’s origin, or to one of the cell’s corners. A drop-down menu in the Cell
Placement Control panel indicates the present selection, and allows the user to make a new choice.
The nomenclature “Upper Left”, etc., refers to the corner of the untransformed cell array bounding box.
When place mode is active, pressing the Enter key repeatedly will cycle the reference point around the
corners and back to the origin.

In electrical mode, the cell reference point is always set to the location of the reference terminal,
which is usually the first terminal defined. If the cell has no terminals, the reference point can be cycled
around the corners, as in physical mode, however for corners the reference point is snapped to the nearest
grid location. This should prevent device terminals from being located off-grid. An electrical cell should
always have terminals (assigned with the subct command in the electrical side menu) if it is to be part
of the circuit, and not some kind of decoration or annotation.

When the Smash button is active, is active, instances will be smashed into the parent where the
user clicks, meaning that the cell content will be merged into the parent cell, rather than creating a new
instance. The flattening is one-level, so that any subcells of the cell being placed become subcells in the
parent.

When the Replace button is active, existing cells are replaced with the new master when clicked
on. and no cells are placed if the user clicks in the area outside of any subcells. When a cell is replaced,
the placement of the new cell is determined in physical mode by the setting of the reference selection
drop-down menu. For example, if this setting is “Upper Right”, the new cell untransformed upper-right
corner will be placed at the existing cell untransformed upper right corner.

In electrical mode, the reference terminal (the first connection point) is always placed at the same
location as the reference terminal of the replaced cell. In either case, any currently active transformations
are performed in addition to the transformations of the replaced cell on the new cell.

Cells can be placed or replaced only when place mode is active, i.e., when the Place button in the
Cell Placement Control pop-up or the place button in the side menu is active.

When place mode becomes active, the current transform is cleared. The current transform is saved
in Register 0 and cleared when switching between cells to place or upon pressing the Desel button.
Pressing the Forward Slash button swaps the current and saved transforms.

194 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

If the Use Array button is active when cells are being replaced, the replaced cell will take the array
parameters from the Cell Placement Control panel. Otherwise, the array parameters are unchanged
during replacement. Note that it is possible to replace an instance with another instance of the same
cell, but with different array parameters. This is one way that array parameters can be “edited”.

The Dismiss button will retire the Cell Placement Control panel, and exit place mode.

The cell currently being placed, the “master”, can be selected in several ways. A list of masters
is kept, and can be viewed with the menu button in the Cell Placement Control panel. Pressing
and holding button 1 with the pointer on the menu button issues a drop-down menu, whose entries are
highlighted as the pointer passes over them. A selection is made by releasing button 1 over one of the
selections. Pressing the New button in this menu brings up a dialog box which allows the user to enter
a new master name.

The pop-up list of cells will grow with each addition until a limit is reached, at which point new
entries will replace the oldest one. The New item is always at the top of the list. The list consists of the
most recent masters specified, either with the New button, or through the Place button in the Cells
Listing or Files Listing panels.

The maximum number of masters saved in the menu can be specified with the Maximum menu
length entry area just below the menu. The default is 25, which may not be suitable for some screen
resolutions or window systems. It is not very useful if the pull-down menu extends off-screen. This entry
tracks the value of the MasterMenulLength variable. The variable can be set as an integer or cleared to
change the value, which is equivalent to changing the integer entry in this panel.

When a new entry is selected, a dialog pop-up appears for the new cell name. If a selection can be
found in the various panels that provide file or cell selection, that selection is pre-loaded into the dialog
as a default. Each of these sources is tested in order, and the first one that is visible and has a selection
will yield the default cell name.

e A selection in the File Selection pop-up from the File Select button in the File Menu.

A selection in the Cells Listing pop-up from the Cells List button in the Cell Menu.

A selection in the Files Listing pop-up from the Files List button in the File Menu, or its
Content List.

A selection in the Content List of the Libraries pop-up from the Libraries List button in the
File Menu.

A selection in the Cell Hierarchy pop-up from the Show Tree button in the Cell Menu or
from the Tree button in the Cells Listing pop-up.

A cell name that is selected in the Info pop-up, from the Info button in either the View Menu
or the Cells Listing pop-up.

The name of a selected subcell in the drawing window, the most recently selected if there is more
than one.

The first time the Cell Placement Control panel comes up, the user is prompted for the name of
a cell, just as if the New menu button was pressed.

The name provided can be a file containing data in one of the supported archive formats, the name
of an Xic cell, or a library file. If the name of an archive file is given, the name of the cell to open can
follow the file name separated by space. If no cell name is given, the top level cell (the one not used as

7.13. THE PLOT BUTTON: GENERATE SPICE PLOT 195

a subcell by any other cells in the file) is the one opened for placement. If there is more than one top
level cell, the user is presented with a pop-up choice menu and asked to make a selection. If the file is
a library file, the second argument can be given, and it should be one of the reference names from the
library, or the name of a cell defined in the library. If no second name is given, a pop-up listing the
library contents will appear, allowing the user to select a reference or cell.

The given given string can also consist of the name of a Cell Hierarchy Digest (CHD) in memory,
optionally followed by the name of a cell known within the CHD hierarchy. If no cell name is provided,
the cell name configured into the CHD is understood. The string can also contain the name of a saved
CHD file, with an optional following cell name.

The Cell Placement Control panel is sensitive as a drop receiver. If a file name is dragged over
the panel and the mouse button released, the behavior is as if the New button in the masters menu was
pressed, and the file name will be loaded into the dialog window.

7.13 The plot Button: Generate SPICE Plot

The plot button, available only in electrical mode, gathers input for plotting via WRspice.

The prompt area displays the command string as it is being built. Clicking on nodes or device
“hidden” targets (usually indicated by a ‘+’ symbol in the device schematic representation) will add
hypertext entries to the command string, and will add a marker to the screen at the clicked-on location.
One can click anywhere on a wire, or on subcircuit and device connection points to select nodes. Clicking
on a marker will delete the marker, and the corresponding entry from the string.

Some devices have “hidden” nodes for accessing internal variables for plotting, such as current through
a voltage source or the phase of a Josephson junction. By convention, these are indicated with a ‘+’
mark in the symbol. For many devices, this will access the current through the device. The marker for
a current has an orientation in the direction of positive current flow. Ordinary node markers have no
orientation, and access the node voltage.

One can click on reference points to any depth in the hierarchy, though selection requires that the
cell be showing as a schematic, and as expanded. To make selections inside a subcircuit that is shown
as a symbol, one can use proxy windows (see 3.1.3). Holding down both the Shift and Ctrl keys, and
clicking on a subcircuit instance, will bring up a sub-window displaying the master of the clicked-on
instance in schematic form. One can click on objects in this window in the normal way, and plot points
will be added to the prompt line.

Holding the Shift key while clicking on a device of subcircuit not over any node or “hidden” location
will enter the hypertext device or subcircuit name. These are not often needed in plot command strings,
and the requirement of holding down Shift prevents unwanted returns.

Markers can be deleted by clicking on them, or by deleting the corresponding hypertext in the prompt
line. Multiple markers can reference the same node, as long as they are spatially distinct.

Existing marks can be dragged and dropped to a new location, which must also reference a node or
reference point, as for the initial placement. If dropped on an existing plot mark, the two marks will
exchange locations, both as marks in the drawing window, and hypertext entries in the prompt line.

The prompt line text is equivalent to the string given to the plot command in WRspice. The string can
be edited in the usual way. The user can add text to combine the hypertext references into expressions

196 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

involving other syntax elements known to WRspice. The registers available through the S and R buttons
to the left of the prompt line can be used to save and restore plot command strings.

The WRspice parser can distinguish the expressions, however in some cases the user must intervene
to force an expected result. For example,

v(1l) -v(2)

will be interpreted as (v(1)-v(2)), i.e., the difference. To force a unary minus interpretation, one can
enclose the second token in double quotes or parentheses, i.e. v(1) "-v(2)" will plot v(1) and negative
v(2). Note that white space is not considered when interpreting the expression, and is required only to
separate identifier names.

One should refer to the WRspice documentation for a complete description of the syntax accepted by
the plot command. The command line can also contain keyword assignments which override defaults
used when composing the plot. It is also possible to produce X-Y plots by using the “vs” keyword. The
expression following “vs” will be used as the X scale for the other expressions.

The color used to render a plot reference mark in the schematic will be the same color used for
the plot trace of the result to which the corresponding hypertext contributes (however, if the user has
changed the plotting colors in WRspice or Xic, this may not be true). The number (or letter) enclosed by
the plot mark represents a count of the hypertext entries found in the prompt line, left to right, starting
with 1.

If Xic detects a syntax error, one or more plot marks may be rendered with “no” color (actually the
highlighting color is used). This is also true for the marks used in the X-scale of an X-Y plot.

The Enter key terminates entry, and creates the plot if WRspice is available, and the circuit has been
simulated with the run command. In the deck command, the string will be added to the SPICE listing,
when generated, as a .plot line.

While the plot command is active, it is possible to select text labels in the normal way, other
selections are inhibited. This allows labels to be selected and modified without having to explicitly
terminate the plot command first.

The command text and mark locations are saved with the cell data when written to disk, thus the
plot command string is persistent.

7.14 The polyg Button: Create/Edit Polygons

D

The polyg button is used to create and modify polygons. In electrical mode, this functionality is
available from the poly menu selection brought up by the shapes button. A polygon is created by
clicking the left mouse buton on each vertex location in sequence. The vertices can be undone and
redone with the Tab key and Shift-Tab combination, which are equivalent to the Undo and Redo
commands. Vertex entry is terminated, and a new polygon potentially created, by clicking on the initial
point (marked with a cross), or double-clicking the last point, or by pressing the Enter key. At least
three distinct vertices must have been defined, and the polygon must pass some “normality” tests, for
successful object creation.

The PixelDelta variable can be set to alter the value, in pixels, of the snap distance to the target

7.14. THE POLYG BUTTON: CREATE/EDIT POLYGONS 197

when clicking to terminate. By default, the snap distance is 3 pixels, so clicking within this distance of
the initial point will terminate entry rather than add a new vertex.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within two pixels. When snapped, a small
dotted highlight box is displayed. This makes it much easier to create abutting objects when the grid
snap spacing is very fine compared with the display scaling. This is also applied to the first vertex of
polygons being created, facilitating point list termination. This feature can be controlled from the Edge
Snapping group in the Snapping page of the Grid Setup panel.

When adding vertices during polygon creation, the angle of each segment can be constrained to a
multiple of 45 degrees with the Constrain angles to 45 degree multiples check box in the Editing
Setup panel from the Edit Menu, in conjunction with the Shift and Ctrl keys. There are three modes:
call them “no45” for no constraint, “reg4b” for constraint to multiples of 45 degrees with automatic
generation of the segment from the end of the 45 section to the actual point, and “simp45” that does
no automatic segment generation. The “reg45” algorithm adds a 45 degree segment plus possibly an
additional Manhattan segment to connect the given point. The “simp45” adds only the 45 degree
segment. The mode employed at a given time is given by the table below. The Constrain45 boolean
variable tracks the state (set or not set) of the check box.

Constrain4b not set

Shift up | Shift pressed
Ctrl up no45 regdd

Ctrl pressed | simp45 | simp4b

Constrain45 set

Shift up | Shift pressed
Ctrl up regdb no4b

Ctrl pressed | simp45 | nodb

In physical mode, a new polygon is tested for reentrancy and other problems, and a warning message
is issued if a pathology is detected. The new polygon is not removed from the database if such an error
is detected. It is up to the user to make appropriate changes.

In electrical mode, if the current layer is the SCED layer, the polygon will be created using the ETC2
layer, otherwise the polygon will be created on the current layer. It is best to avoid use of the SCED
layer for other than active wires, for efficiency reasons, though it is not an error. The Change Layer
command in the Modify Menu can be used to change the layer of existing objects to the SCED layer,
if necessary. The outline style and fill will be those of the rendering layer. Polygons have no electrical
significance, but can be used for illustrative purposes.

7.14.1 Polygon Vertex Editing

On entering the polyg command, if a polygon is selected, a vertex editing mode is active on all selected
polygons. Each vertex of the selected object is marked with a small highlighting box. Clicking on the
edge of a selected polygon away from an existing vertex will create a new vertex, which can subsequently
be moved.

In order to operate on a vertex, it must be selected. A vertex can be selected by clicking on it, or by
dragging over it. Any number of vertices can be selected. After the selection operation, selected vertices
are shown marked with a larger box, and unselected vertices are not marked. Additional vertices can
be selected, and existing selected vertices unselected, by holding the Shift key while clicking or dragging
over vertex locations. Selecting a vertex a second time will deselect it.

198 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

Selected vertices can be deleted by pressing the Delete key. This will succeed only if after vertex
removal the object does not become degenerate. In particular, one can not delete the object in this
manner.

The selected vertices can be moved by dragging or clicking twice. The selected vertices will be
translated according to the button-down location and the button up location, or the next button-down
location if the pointer did not move. While the translation is in progress, the new borders are ghost-
drawn.

All vertex operations can be undone and redone through use of the Undo and Redo commands.

With vertices selected, pressing the Esc or Backspace keys will deselect the vertices and return to
the state with all vertices marked.

While in the polyg command, with no object in the process of being created, it is possible to change
the selected state of polygon objects, thus displaying the vertices and allowing vertex editing. Pressing
the Enter key will cause the next button 1 operation to select (or deselect) polygon objects. This can be
repeated arbitrarily. When one of these objects is selected, the vertices are marked, and vertex editing
is possible.

If the vertex editor is active, i.e., a selected polygon is shown with the vertices marked, clicking with
the Ctrl button pressed will start a new polygon, overriding the vertex editor. This can be used to start
a new polygon at a marked vertex location, for example. Without Ctrl pressed, the vertex editor would
have precedence and would select the marked vertex instead of starting a new polygon.

While moving vertices, holding the Shift key will enable or disable constraining the translation angle
to multiples of 45 degrees. If the Constrain angles to 45 degree multiples check box in the Editing
Setup panel from the Edit Menu is checked, Shift will disable the constraint, otherwise the constraint
will be enabled. The Shift key must be up when the button-down occurs which starts the translation
operation, and can be pressed before the operation is completed to alter the constraint. These operations
are similar to operations in the Stretch command.

7.14.2 Wire to Polygon Conversion

If any non-zero width wires are selected before the polyg command is entered, the user is given the
option of changing the database representation of these objects to polygons. Is is not possible to convert
polygons to wires (except via the Undo command if the polygon was originally a wire).

7.15 The put Button: Extract From Yank Buffer

o

The put command allows the contents of the yank buffers to be added to the current cell. This
command is available in physical mode. When parts of objects are erased with the erase command, the
erased pieces are added to a five-deep yank buffer queue. When the put button becomes active, the

most recent deletion is ghost drawn and attached to the pointer. Clicking will place the contents of the
buffer at the location of the pointer. The yank buffers can be cycled through with the arrow keys.

7.16. THE ROUND BUTTON: CREATE DISK OBJECT 199

7.16 The round Button: Create Disk Object

L

The round button, only available in physical mode, will create a disk polygon object. The number
of sides can be altered with the sides command. If the user presses and holds the Shift key after the
center location is defined, and before the perimeter is defined by either lifting button 1 or pressing a
second time, the current radius is held for x or y. The location of the shift press defines whether x is
held (pointer closer to the center y) or y is held (pointer closer to the center x). This allows elliptical
objects to be generated.

The Ctrl key also provides useful constraints. Pressing and holding the Ctrl key when defining the
radius produces a radius defined by the pointer position projected on to the x or y axis (whichever
is closer) defined from the center. Otherwise, off-axis snap points are allowed, which may lead to an
unexpected radius on a fine grid.

When the command is expecting a mouse button press to define a radius, the value as defined by the
mouse pointer (in microns) is printed in the lower left corner of the drawing window, or the X and Y
values are printed if different. Pressing Enter will cause prompting for the value(s), in microns. If one
number is given, a circular radius is accepted, however one can enter two numbers separated by space
to set the X and Y radii separately.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within two pixels. When snapped, a small
dotted highlight box is displayed. This makes it much easier to create abutting objects when the grid
snap spacing is very fine compared with the display scaling. This feature can be controlled from the
Edge Snapping group in the Snapping page of the Grid Setup panel.

If the SpotSize variable is set to a positive value, or the MfgGrid has been given a positive value in
the technology file, tiny round and donut figures are constructed somewhat differently. the figure is con-
structed somewhat differently. Objects created with the round and donut buttons will be constructed
so that all vertices are placed at the center of a spot, and a minimum number of vertices will be used.
The sides number is ignored. This applies only to figures with minimum radius 50 spots or smaller;
the regular algorithm is used otherwise. An object with this preconditioning applied should translate
exactly to the e-beam grid. See E.11 for more information.

7.17 The run Button: Run SPICE Analysis

§"
The run button, available only in electrical mode, will establish interprocess communication with

the WRspice program. If a link can not be established, the run command terminates with a message. If
connection is established, then a SPICE run of the circuit is performed.

The user is first prompted for the WRspice analysis command string to run. This should be in a
format understandable to WRspice as an interactive-mode command. During prompting, the last six
unique analysis commands entered are available and can be cycled through with the up and down arrow
keys.

The first word in the analysis string is checked, and only words from the following list will be accepted:

200 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

ac loop run tran
check noise send

dc op sens

disto pz tf

The “send” keyword is not a WRspice command. If given, the circuit will be sent to WRspice and
sourced, but no analysis is run. Other commands can be sent to WRspice with the spcmd button.

The link is established to the SPICE server (wrspiced daemon) named in the SPICE_HOST environ-
ment variable, or the SpiceHost “Iset” variable (which overrides the environment). If neither is set, Xic
will attempt to attach to WRspice on the local machine.

By default, the WRspice toolbar is visible when a connection has been established. This gives the
user more control over WRspice by providing access to the visual tools. If the NoSpiceTools variable is
set (with the !set command), the toolbar will not be visible.

During a simulation run, a small pop-up window appears, which contains a status message, and a
Pause button. Pressing Pause will pause the analysis. It can be resumed by pressing the run button
again. The analysis can also be paused by pressing Ctrl-c in the controlling terminal (xterm) window.
A Ctrl-c press over a drawing window goes to Xic, where it stops redraws and other functions as usual.

Xic is notified when a run is paused from WRspice (using the red X button in the toolbar), and will
change state accordingly. However, Xic is not notified when a run is restarted from WRspice (with the
green triangle button in the toolbar), and will continue to assume that WRspice is inactive. In this
case, commands from Xic that communicate with WRspice will pause any analysis in progress before
executing. The user will have to resume the analysis manually after the operation completes, either with
the run button or from the WRspice toolbar.

This affects the plot, iplot, and run buttons, and the !spcmd command. When a run is started
or resumed with the run button in Xic, these features are locked out, producing a “WRspice busy”
message, and the run in progress is not affected.

The node connectivity is recomputed, if necessary, before the run. If the variable CheckSolitary is set
with the !set command, then warnings are issued if nodes with only one connection are encountered.
A SPICE file is generated internally, and transmitted to WRspice for evaluation. Only devices and
subcircuits that are “connected” will be included in the SPICE file. A device or subcircuit is connected
if one of the following is true:

e There are two or more non-ground connections.
e There is one non-ground connection and one or more grounds.
e There is one non-ground connection and no opens.

e There is one non-ground connection and the object is a subcircuit.

As a final step before sending the circuit text to SPICE, Xic will recursively expand all .include and
.1ib lines, replacing the .include lines with the actual file text, and the .1ib lines with the indicated
text block from the library. This is to handle the case where WRspice is located on a remote machine,
and the user’s files are on the local machine. As in WRspice, .inc is a synonym for .include, and the
‘h’ option (strip ‘$’ comments for HSPICE compatibility) is recognized.

The .include and .1lib lines are generally inserted into the SPICE text using the spicetext label
mechanism. There may be occasions where the expansion of these lines by Xic is undesirable, such as
when the included file resides on the SPICE host, or one wishes to use the WRspice sourcepath variable
to resolve the file. To this end, the user can use the .spinclude keyword rather than .include, and

7.18. THE SHAPES BUTTON: ADD PREDEFINED FEATURES 201

.splib rather than .1ib. The .sp directives use the same syntax as the normal keywords, however
Xic will not attempt to expand these directives, rather it changes the keyword to the normal directive
(“.include” or “.1ib”). Thus, WRspice will see and handle these inclusions.

WRspice release 2.2.60 and later recognize .spinclude as a synonym for .include. This allows
WRspice to be able to directly source top-level cell files, where the SPICE listing may contain .spinclude
lines, without syntax errors. WRspice release 2.2.62-2 and later recognize .splib as a synonym for .1ib,
and is able to handle .1ib constructs sent from Xic.

Sometimes it may be desirable to place the output of a SPICE run initiated from Xic into a rawfile,
rather than saving the output internally. To do this, use the spicetext labels to add an analysis string,
such as “spicetext .tran 1p 1000p” (note that the ‘.” ahead of “tran” is necessary). One can also add
a save command using “spicetext *#save v(1) ...” to save only a subset of the circuit variables.
The “x#” means that the save is executed as a shell command, “.save” is ignored since WRspice is in
interactive mode. Then, for the analysis string from Xic, use “run filename”, where filename is the name
for the rawfile. The run will be performed, but the output data will go to the file, so don’t expect to see
it with the plot command. If the filename is omitted, the run will be performed with internal storage
as usual.

The !spcmd command can be used to give arbitrary commands to WRspice.

7.18 The shapes Button: Add Predefined Features

&b

The shapes button appears in the electrical mode side menu. Pressing this button provides a pull-
down menu of different outlines that can be applied to drawings. These outlines have no electrical
significance, but can be used for illustrative purposes. In particular, in symbolic mode, this facilitates
creating symbol representations. After a selection is made from the pull-down menu, the shape outline
is ghost-drawn and attached to the pointer. The object is placed at locations where the user clicks.

The current choices in the pull-down menu are:

box Create a box, like the physical mode box command.
poly | Create a polygon, like the physical mode polyg command.
arc Create an arc, similar to the physical mode arc command.

dot Place a dot (an octagonal polygon).
tri Place a triangle (buffer symbol).

ttri Place a truncated triangle symbol.
and Place an AND gate symbol.
or Place an OR gate symbol.

Sides | Set the number of sides used to approximate rounded geometry, similar to
the sides command in physical mode.

None of these shapes have significance electrically, and for efficiency is is best to avoid using the
SCED layer for these objects. In particular, arcs are actually wires, and arc vertices on the SCED layer
are considered in the connectivity establishment. If the current layer is SCED when one of these objects
is created, the object is instead created on the ETC2 layer. If the object must be on the SCED layer,
the Change Layer command in the Modify Menu can be used to move it to that layer.

The dot, tri, ttri, and, and or choices work a little differently from the others. After selection, a ghost

202 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

rendering of the shape is attached to the pointer, and the objects are placed where the user clicks. The
object can be modified with the arrow keys:

Up expand by 2
Right expand by 10%
Down shrink by 2
Left shrink by 10%

Shift-Up stretch vertically 10%
Shift-Right stretch horizontally 10%
Shift-Down shrink vertically 10%

Shift-Left shrink horizontally 10%
Ctrl-Arrows cycle through 90 degree rotations

7.19 The sides Button: Set Rounded Granularity

1
The sides button, available in physical mode, allows the user to set the number of sides used to

approximate rounded geometries. Larger numbers give better resolution, but decrease efficiency. The
number provided is the sides for a full 360 degrees, arcs will use proportionally fewer.

The setting tracks the RoundFlashSides variable. If the variable is not set, 32 sides will be used. The
acceptable range is 8-256.

The setting applies when new round objects are created with the round, donut, and arc buttons
in the physical side menu, or the equivalent script functions.

In electrical mode, the number of sides used has a separate setting using the ElecRoundFlashSides
variable, which can be set from the sides entry in the menu presented by the shapes button in the
electrical side menu.

7.20 The spcmd Button: Execute WRspice Command

‘E

This will prompt the user, in the prompt area, for a command that will be sent to WRspice for
execution. If the user simply presses Enter without entering a command, or enters the command “setup”,
the WRspice Interface Control Panel will appear, from which the interface to WRspice can be set
up. This panel is described in the next section.

Otherwise, a stream to WRspice will be established, if one is not already active, providing a means
for running arbitrary WRspice commands. However, commands that cause WRspice to prompt the user
for additional input (such as setplot) will not work properly, as the communication is one-way only
and not interactive. Text output goes to the console window.

In addition to the WRspice commands, the client-side directive

send filename

7.20. THE SPCMD BUTTON: EXECUTE WRSPICE COMMAND 203

is available. The filename is that of a local SPICE input file. The file will have .include and .1ib lines
expanded locally, and .spinclude, .splib lines will be converted to “.include”, “.1ib”, as is done for
decks created within Xic. The result will be sent to WRspice and sourced.

This operation is basically identical to the !spemd command.

7.20.1 The WRspice Interface Control Panel

This panel appears when the user presses the spcmd button in the electrical side menu, and either gives
no command at the prompt, or enters “setup”. It provides entry areas for setting the variables which
control the interprocess communication channel to the WRspice circuit simulator, and other simulation
settings. Most users will probably never need to use this panel or set the associated variables as the
defaults suffice in most installations.

The WRspice Interface Control Panel contains the following entry objects.

List all devices and subcircuits
This check box corresponds to the SpiceListAll variable. When checked, all devices and subcircuits
in the schematic will be included in SPICE output. Otherwise, only devices and subcircuits that
are “connected” will be included, as explained in the deck and run command descriptions.

Check and report solitary connections
This check box corresponds to the CheckSolitary variable. If checked, warning messages will be
issued when electrical netlists are generated for nodes having only one connection. This affects the
run and deck commands, and the Dump Elec Netlist command in the Extract Menu.

Don’t show WRspice Tool Control panel
This check box corresponds to the NoSpiceTools variable. When running WRspice from Xic, by
default the WRspice toolbar is shown, if WRspice is running on the local machine. This gives the
user much greater flexibility and control over WRspice. If this check box is checked, before the
connection to WRspice is established, the toolbar will not be visible.

This check box will also control toolbar visibility if the wrspiced daemon is used. However, this
requires wrspiced distributed with wrspice-3.0.7 or later. If this variable is set with an earlier
wrspiced release, the WRspice connection will not work!

Spice device prefix aliases
This group consists of a check box and a text entry area. When the box is checked, the text in the
entry area will be used to set the SpiceAlias variable. This can be set to a string which will modify
the printing of device names in SPICE output. The aliasing operates on the first token of device
lines. The format of the string is

prefizl =newprefixl prefix2=newprefiz2 ...
This will cause lines beginning with prefiz to have prefix replaced with newprefiz. If the “=newpre-
fix” is omitted, that line will not be printed. For example, to map all devices that begin with ‘B’
to ‘J’, and to suppress all ‘G’ devices, the string is

B=J G

Note that there can be no space around the ‘=". With the text entered and the box checked, the
indicated mappings will be performed as SPICE text is produced.

204 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

Remote WRspice server host name
This group consists of a check box and a text entry area. When the box is checked, the SpiceHost
variable is set to the text in the text area.

The text should be the name of the host which maintains a server for remote WRspice runs.
If set, this will override the value of the SPICE_LHOST environment variable. The host name
specified in the SPICE_.HOST environment variable and the SpiceHost !set variable can have a
suffix “:portnum”, i.e., a colon followed by a port number. The port number is the port used by
the wrspiced program on the specified server, which defaults to 6114, the IANA registered port
for this service. If the server uses a non-standard port, and the wrspice/tcp service has not been
registered (usually in the /etc/services file) on this port, the port number must be provided.

Remote WRspice server host display name
This group consists of a check box and a text entry area. When the box is checked, the SpiceHost-
Display variable is set to the text in the text area.

This text can be set to the X display string to use on a remote host for running WRspice through
a wrspiced daemon, from Xic in electrical mode. This is intended to facilitate use of ssh X
forwarding to take care of setting up permission for the remote host to draw on the local display.
See the description of the piceHostDisplay variable for complete details.

Path to local WRspice executable
This group consists of a check box and a text entry area. When the box is checked, the SpiceProg
variable is set to the text in the text area.

The text is the full path name of the WRspice executable. This is useful if there are multiple
versions of WRspice available, or the binary has been renamed, or is not located in the standard
location. If given, the value supersedes the values from environment variables or other variables
(and corresponding entries) which also set a path to the SPICE executable.

Path to local directory containing WRspice executable
This group consists of a check box and a text entry area. When the box is checked, the SpiceExecDir
variable is set to the text in the text area.

The text is a path to the directory to search for the WRspice executable. If given, the value overrides
the SPICE_EXEC_DIR environment variable. The default search location is “/usr/local/xictools/bin”,
or, if the XT_PREFIX environment variable has been set, its value will replace “/usr/local”.

Assumed WRspice program executable name
This group consists of a check box and a text entry area. When the box is checked, the SpiceEx-
ecName variable is set to the text in the text area.

The text will give the expected name of the WRspice binary. If given, the value overrides the
SPICE_LEXEC_NAME environment variable. The default name is “wrspice”.

Assumed WRspice subcircuit concatenation character
This group consists of a check box and a text entry area. When the box is checked, the Spice-
SubcCatchar variable is set to the text in the text area. See the description of the variable for
information about this setting.

Assumed WRspice subcircuit expansion mode
This group consists of a check box and a menu. When the box is checked, the SpiceSubcCatmode
variable is set to the current menu selection. See the description of the variable for information
about this setting.

7.21. THE SPIN BUTTON: ROTATE OBJECTS 205

7.21 The spin Button: Rotate Objects

A

The spin button, available in physical mode, allows rotation of boxes, polygons, and wires by an
arbitrary angle, and subcells and labels by multiples of 45 degrees. If no objects are selected, the user
is requested to select an object. With the object selected, the user is asked to click on the origin of
rotation. The selected objects are ghost-drawn, and rotated about the reference point as the pointer
moves.

If the Constrain angles to 45 degree multiples check box in the Editing Setup panel from
the Edit Menu is checked, the angle will be constrained to multiples of 45 degrees. Pressing the Shift
key will remove the constraint. If the check box is not checked, holding the Shift key will impose
the constraint. Thus the Shift key inverts the effect of the check box. However, if the selected objects
include a subcell or label, the angle will always be constrained to multiples of 45 degrees. The Constrain45
variable tracks the state (set or unset) of the check box.

During rotation, the angle is displayed in the lower left corner of the drawing window. The readout
defaults to degrees, pressing the ‘r’ key will switch to radians, and pressing the ‘d’ key will switch back
to degrees. Pressing the spacebar will toggle between radians and degrees.

At this point, one can click to define the rotation angle, or an absolute angle can be entered on
the prompt line. To enter an angle, either press Enter or click on the origin marker, then respond to
the prompt with an angle in degrees. In either case, the rotated boundaries of the selected objects are
attached to the pointer, and new objects can be placed by clicking. Ordinarily, the original objects will
be deleted, however if the Shift key is held while clicking, the original objects are retained. Instead of
clicking, one can press the Enter key, which will simply rotate the selected objects around the reference
point.

When the spin command is at the state where objects are selected, and the next button press
would establish the rotation origin, if either of the Backspace or Delete keys is pressed, the command
will revert the state back to selecting objects. Then, other objects can be selected or selected objects
deselected, and the command is ready to go again. This can be repeated, to build up the set of selections
needed.

At any time, pressing the Deselect button to the left of the coordinate readout will revert the
command state to the level where objects may be selected to rotate.

The undo and redo operations (the Tab and Shift-Tab keypreses and Undo/Redo in the Modify
Menu) will cycle the command state forward and backward when the command is active. Thus, the
last command operation, such as setting the angle by clicking, can be undone and restarted, or redone
if necessary. If all command operations are undone, additional undo operations will undo previous
commands, as when the undo operation is performed outside of a command. The redo operation will
reverse the effect, however when any new modifying operation is started, the redo list is cleared. Thus,
for example, if one undoes a box creation, then starts a rotation operation, the “redo” capability of the
box creation will be lost.

It is possible to change the layer of rotated objects. During the time that newly-rotated objects are
ghost drawn and attached to the mouse pointer, if the current layer is changed, the objects that are
attached can be placed on the new layer. Subcells are not affected.

How this is applied depends on the setting of the LayerChangeMode variable, or equivalently the
settings of the Layer Change Mode pop-up from the Set Layer Chg Mode button in the Modify

206 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

Menu. The three possible modes are to ignore the layer change, to map objects on the old current layer
to the new current layer, or to place all objects on the new current layer. If the current layer is set back
to the previous layer before clicking to locate the new objects, no layers will change.

Note that this operation can change boxes to polygons and vice-versa. The rotation can be performed
by clicking or dragging, however an angle can only be entered textually if the clicking mode is used.

7.22 The style Button: Set/Change Wire Style

~

The style button, available in physical mode, pops up a menu of options for the presentation style of
wires. The Wire Width choice sets the default width if no wires are selected, or changes the width of
selected wires. If there are wires selected, Xic prompts for a new wire width for the selected wires, and
the selected wires will have their widths altered. The new width should not be less than the minimum
width (MinWidth design rule) for the layers.

If there are no applicable wires selected, the default wire width for the current layer is set, which is
constrained to be greater or equal to the minimum width. Wires subsequently created on the present
layer will have the new width.

The other choices set the default end style if no applicable wire is selected, or changes selected wires
to the chosen end style if wires are selected. All selections depend on layer-specific mode. In layer-specific
mode, only selected wires on the current layer are changed. Otherwise, all selected wires are changed.

The possible end styles are flush ends, extended rounded ends, and extended square ends. The
extended styles project the length of the wire by half of the width beyond the terminating vertex. The
button icon changes to indicate the present wire end style with a small dot.

7.23 The subct Button: Set Subcircuit Connections

1y

The subct button, available in the electrical side menu, allows electrical connection terminals to
be added to a circuit. The terminals are points at which electrical connections are defined, as in the
SPICE subcircuit definition. Terminal definition is necessary if the circuit is to be used as a subcircuit
in another circuit with connections to the instance (it is possible for a subcircuit to connect to global
nets only (see 7.11), in which case the master and instances would have no terminals). The terminals
are also used by the extraction system and can provide an initial association of a particular schematic
net and physical conductor group.

Terminals can only be created in electrical mode. Once created, a terminal’s flags may be edited so
as to enable a corresponding terminal location in the physical layout. The extraction system will most
often find suitable physical terminal locations automatically, however there are times when the user may
need to place terminals manually, which can be done with the Edit Terminals button in the Views
and Operations page of the Extraction Setup panel from the Setup button in the Extract Menu,
while in physical mode. In electrical mode, this same button is equivalent to the subct button in the
side menu.

7.23. THE SUBCT BUTTON: SET SUBCIRCUIT CONNECTIONS 207

Subsequent to creation with the present command, terminals can be made visible with the terms
button in the electrical side menu. While in physical mode, the terminals will be visible in electrical
windows when either the All Terminals or Cell Terminals Only check boxes in the Show group in
the Views and Operations page of the Extraction Setup panel is checked.

The terminals must be defined in the schematic representation of the cell, whether or not the cell
will ultimately be symbolic (see 7.25). The terminals can be created and deleted only in the schematic.
Once created, they will be visible in the symbol view, but must be moved to the desired location by
hand. In the symbol view (only) each terminal can have arbitrarily many copies or itself at different
locations, each one of which is an equivalent connection point for the subcircuit. This facilitates, for
example, tiling. If an equivalent connection point appears on either side of the instance, then placing
a row of these instances side-by-side will automatically connect this node to all of the instances. This
applies only to the symbolic representation. In the schematic, each cell terminal has a single connection
point.

In Xic, there are two types of cell contact terminals.

Scalar terminals
These are the “normal”; single-contact terminals. These terminals actually convey the connectivity
information between the parent and subcell schematics, and are the only terminals that may have
corresponding terminals in the physical layout. A scalar terminal is associated with a node property,
of a cell or cell instance.

Multi-contact “bus” terminals
These terminals reference the scalar terminals and provide a means for connecting a number
of these terminals to a multi-conductor net in the schematic. The use of multi-conductor nets
and multi-contact terminals can greatly simplify a schematic visually. Be advised that a multi-
conductor terminal only references existing scalar terminals, which must exist. These terminals
are associated with a bnode property, of a cell or cell instance.

In the schematic, by default ordinary scalar terminals can only be located at connection points of the
underlying geometry. These are the vertices of electrically-active wires, and device or subcell connection
points. Clicking on such a point, if no terminal already exists at the point, will create a new scalar
terminal at the location. The Terminal Edit panel will appear, which can be used to apply a name for
the terminal and edit other terminal properties. The new terminal will be shown highlighted to indicate
that it is the target of the Terminal Edit panel.

7.23.1 Virtual Terminals

If one holds the Ctrl key while clicking anywhere except over another terminal, a scalar terminal will be
placed, whether or not it is over a circuit connection point. This is useful if the BYNAME flag is to be
set for the terminal, which indicates that it will not connect by location, but by name matching only.
It is also useful for implementing “virtual” terminals which connect to nothing, but satisfy connectivity
references in layout vs. schematic testing, and for other purposes.

Suppose one has a subcell with physical layout only that one wishes to include in a full design
hierarchy. It may not be convenient to create a schematic for the subcell, but it is desired that the
connections to the subcell be included in the LVS checking of the overall design. It is possible to assign
“virtual terminals” to the subcell. Virtual terminals are treated like ordinary terminals in connecting to
instances of the subcell, but are ignored when creating netlists for the subcell itself.

208 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

A virtual terminal is created in the subct command by holding the Ctrl key while clicking on locations
in the electrical schematic (even if the schematic is empty). They can be placed anywhere except on top
of another terminal; location is not important. Once created, they can be moved or deleted like ordinary
terminals.

Once placed, they will be considered in establishing the connectivity to instances of the cell, but will
be ignored when establishing connections within the cell. Thus the cell looks like a “black box” with
terminals. Virtual terminals can be used along with ordinary terminals if only part of the internal circuit
is to be visible from the outside.

In SPICE netlists, virtual terminals will appear in the subcircuit connection list in .subckt and call
lines, but will not be connected in the .subckt definition. One can use a spicetext label to add a
.include line to bring in a circuit definition from a file, for example, to satisfy the references.

In the graphical display, virtual terminals of the current cell are shown with a beer-barrel outline
for differentiation from the standard terminals which are square. The cell bounding box is expanded
to contain all virtual terminal locations. The center of a virtual terminal is a “hot spot” for hypertext
node references, i.e., clicking on the terminal center will add the associated node to the prompt line edit
string in the plot and iplot commands and when creating labels or properties.

7.23.2 Multi-Contact Connectors

If the Shift key is held while clicking in the schematic, a new multi-contact terminal will be created. A
different version of the Terminal Edit panel will appear, allowing the new terminal to be configured.

Multi-contact terminals reference scalar terminals, and every referenced scalar terminal should exist.
The pop-up provides convenience functions for creating the “bit” terminals. In some cases, these will be
made invisible and not shown in either the schematic or symbol, yet they must exist as they provide a
crucial data structure required for actual connectivity.

Named and unnamed multi-conductor terminals identify their constituent bits quite differently. If a
terminal is named, the name is a net expression (see 4.2.8) that unambiguously specifies the names of
the scalar terminals. These terminals are referenced by name, so ordering is unimportant.

If a multi-conductor terminal is unnamed, it will at least have a default range of [0:0]. The terminal
also has an index number that defaults to 0. The bits are the scalar terminals with indices starting with
the multi-conductor terminal index value, through the width of the multi-conductor range, contiguously
and increasing. In this case, terminal ordering is obviously quite important.

See the Terminal Edit panel description in 7.24 for a complete discussion of the conrfiguration
options for multi-contact terminals (and scalar terminals, t00).

7.23.3 Terminal Ordering

By default, a newly-created scalar terminal will be given the largest index number, meaning that it
will be the last terminal listed when the subcircuit is represented in SPICE or other netlisting output.
However, it is possible to insert new terminals at any point in the sequence.

If the user types a number while the command is active, the number will appear in the keypress
buffer area for the drawing window that has the keyboard focus. If this number is within the range of
existing terminal indices, then new terminals created from this window will be given this index, and
existing terminals with this index or larger will have their indices incremented.

7.23. THE SUBCT BUTTON: SET SUBCIRCUIT CONNECTIONS 209

Suppose for example that the cell contains five terminals, and one needs to add a sixth, and further
the new terminal should be the fourth terminal in the sequence (index number 3). While in the subct
command, one can type “3” and note that “3” appears in the keypress buffer area. One can now click
on a circuit location to create the new terminal, and note that the new terminal is given index 3, the
previous 3 is now 4, etc. The backspace key can be used to clear the keypress buffer, or the next new
terminal added will also be inserted as number 3. Note that one can type “0” and leave this in place, so
that all new terminals will be added to the front of the list rather than the back.

The indexing and order can also be changed with the Terminal Edit panel.

For multi-contact terminals, the index parameter provides ordering information. The terminal order
assumed by Xic is that a multi-contact terminal is ordered by its index, ahead of a scalar terminal with
the same index. If the multi-contact terminal is named, then the index number is arbitrary, however by
convention Xic will set the index to the index of the first (leftmost) bit. If the terminal is unnamed, the
index is also the index of the first bit, and in fact this identifies the first bit.

7.23.4 Terminal Naming and Editing

If no name is given to a scalar terminal, Xic will use a default name, which is an underscore followed
by the internal index (the number shown in the marker). Otherwise, a short descriptive name can be
entered. The name must follow the rules for a scalar net expression (see 4.2.8), that is, it must be a
simple text name, with or without a single index subscript. A non-default name will be displayed next
to the terminal marker (the default name is assumed if the entry is an underscore followed by one or
two digits).

Clicking on an existing terminal will select it, and begin a move operation. A box will be ghost-drawn
and attached to the mouse pointer. If the terminal is scaler, it can be moved to a new location by clicking
on a connection point not occupied by another terminal. It can be moved to a non-contact point by
holding Ctrl while clicking, and the terminal becomes “virtual”. Multi-contact terminals can be moved
to any location not already occupied by a terminal.

While a terminal is selected, pressing the Delete key will delete the terminal. Pressing Backspace
or Esc will deselect the terminal, aborting the move operation.

If an existing terminal is clicked on with the Shift key held down, or double-clicked on (including
being “moved” to the same location), the Terminal Edit panel will appear, allowing the user to edit
the parameters for the terminal.

From the Terminal Edit panel, it is possible to make the terminal invisible. This can be applied
to terminals that do not participate in the visual connections, so clutter the display needlessly. The
PageUp and PageDown toggle the display of (otherwise) invisible terminals while the subct command
is active. Invisible terminals can also be selected for editing with the Next and Prev buttons in the
panel, which cycle through the terminals to edit by the index value.

In symbolic mode, terminals can not be added or deleted, however they can be moved to new
locations consistent with the symbolic representation. Terminals can be moved by dragging, or by
clicking on a terminal then clicking on the new location. Terminals can be placed anywhere in the
symbolic representation. Further, if the Shift key is held during the terminal placement, the original
terminal mark is retained, i.e., a copy is made. Any number of copies can be placed. Copies can be
deleted by clicking to select, then pressing the Delete key. The last remaining instance of a terminal
can not be deleted in this way, one must go to the schematic to delete the terminal.

210 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

7.24 The Terminal Edit Pop-Up: Editing Terminals

The Terminal Edit pop-up appears when using the subct button in the electrical side menu. It also
appears while in physical mode and using the Edit Terminals button from the Setup page of the
Extraction Setup panel, which is brought up with the Setup button in the Extract Menu. In either
case, it provides a means for editing various properties of a terminal, including its name.

When the panel is visible, one of the terminals in the display is highlighted, and the controls in
the panel represent the state for the highlighted terminal. This is the “target terminal” which will be
modified by the panel.

The panel configures itself for either scalar or multi-contact terminals in electrical mode, depending
on the target terminal. In physical mode, only scalar terminals exist and not all parameters are editable,
and the panel configures itself accordingly. The panel will appear quite different in these three cases.

The target terminal can be changed by Shift-clicking or double-clicking over a different terminal. It
can also be changed with the Prev, Next, and To Index buttons found in the panel.

Every scalar terminal has a unique index number. This is the number that is shown in the box which
represents the terminal in the schematic. This represents the order of the terminals in calls to instances
of the current cell. Bus terminals have an index number as well, which must be one of the scalar terminal
indices. The ordering of the multi-contact terminal is at the index, but before the scalar terminal with
the same index.

The Prev button will cycle the target terminal to the one with index value one less than the current
index, wrapping at zero. The Next button will cycle the target terminal in the opposite direction. The
To Index button and numeric entry area can be used to change the target terminal to one with the
specified index, of the same type (scalar or multi-contact terminal) as the present terminal.

No actual change is made unless or until the Apply button is pressed. Pressing Apply will update
the target terminal according to the entries in the panel. Changes made can be undone and redone with
the standard Xic undo/redo operations.

Pressing the Dismiss button will retire the panel.

7.24.1 Electrical Scalar Terminal Editing

At the top of the panel is a Terminal Index numeric entry area. This can be used to change the
terminals index number, and therefor order in subcircuit references. The renumbering is a two step
process:

1. The present terminal is removed, and the remaining terminals are renumbered, using unique and
contiguous new index values (zero based).

2. The terminal is reinserted at the given index. The terminal that had that index and those larger
will have their index values incremented.

Changing the index of a scalar terminal does not update the multi-contact terminals! The index
values used in the bus terminals may require compensating changes.

Just below is the Terminal Name text entry area. This will contain the name of the terminal,
which can be edited by the user. The entry can be empty, in which case Xic will generate a name.

7.24. THE TERMINAL EDIT POP-UP: EDITING TERMINALS 211

The Has physical terminal check box should be checked if the terminal will have a corresponding
contact point in the physical layout. Setting this check box will allocate the internal data structure
needed to maintain the association. In most cases, this will be required. It is not required if, for
example, the user at this point is only concerned with a schematic for simulations. The terminal can be
edited and this box checked at a later time, when the user is ready to add a layout. The box is never
checked for terminals used in the schematic for special purposes that are perhaps related to simulation,
that have no “real” implementation in the layout.

When the Has physical terminal check box is checked, the Physical group is un-grayed. There
are two controls in this group.

Layer Binding
The Layer Binding menu provides a layer name that is a hint used by the extraction system when
placing the physical terminal in the layout. This is set by Xic after extraction, and if correct should
not be changed. It is set by the user when a terminal is manually placed, to resolve ambiguity
about which layer the terminal connects to.

Location locked by user placement
When a terminal is manually placed, the Location locked by user placement check box will
become checked. This indicates that the FIXED flag is set in the terminal. Terminals with this flag
set will never be moved by Xic during extraction/association.

The location and layer must be correct or association will fail. Although Xic will automatically place
terminals, at times this will fail and the user will have to place some terminals manually to obtain correct
or complete association.

Below the Physical group are check boxes for setting some binary options.

Set contact by name only

This check box, when checked, sets the BYNAME flag in the terminal which changes its interpre-
tation in the schematic (it has no effect in physical mode). Ordinarily, a terminal is placed on a
“connection point” of a wire net in the schematic (i.e., a vertex), or a device or subcircuit contact
point. Association of the terminal to that wire net is by location. If there is no underlying con-
nection point, and the terminal has an assigned name, Xic will then attempt to add the terminal
to an existing net with a matching name. If this flag is set, then the initial attempt to connect
the terminal by location will be skipped. This is useful if the terminal is to be made invisible, to
avoid accidental connections. The scalar wire nets can be named with the Node (Net) Name
Mapping panel from the side menu (see 7.11).

Set terminal invisible in schematic

This check box, when checked, sets the SCINVIS flag in the terminal which prevents the terminal
from being displayed in schematics. This is for terminals that are used only as bit connections for
a multi-contact connector. Recall that every bit in a multi-contact connector is a scalar connector,
that must exist if a connection is to be established. If connectivity is to be provided only via
the multi-contact connector, the individual bits are visually superfluous and clutter the display.
However, they can be made invisible in the schematic with this flag. They should probably also
have the BYNAME flag set as well, so that they don’t make an unintended connection by location.
The setting has no effect in physical mode.

Set terminal invisible in symbol
This check box controls the analogous SYINVIS flag, which when set causes the terminal to be
invisible in the symbolic representation, if any. This flag will almost always track the state of

212 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

the SCINVIS flag, but this is not an absolute requirement. It is possible for a schematic to use
individual bits for connections, whereas the symbol uses a multi-contact terminal, or vice-versa.

7.24.2 Physical Terminal Editing

In physical mode, the panel allows changes only within the Physical group described above. That is, the
Layer Binding choice and the Location locked by user placement check box are the only editable
entries. These have the purpose and functionality as described above. One must return to electrical
mode to change other parameters.

7.24.3 Multi-Contact Connector Editing

When the target terminal is a multi-contact connector, the panel reconfigures itself to provide the
appropriate entry areas.

At the top of the panel is a numeric Term Index entry area. Just below this are two text entry
areas with labels Terminal Name and Net Expression. A “bundle” terminal may have a separate
simple text name, as well as its net expression. If given, the simple text name will be used as a name for
the terminal in instance placements of the cell. The terminal in the instance will look like a pure vector
terminal with the given name, and a range starting with zero and extending to the width of the bundle
minus one.

If the terminal does not represent a bundle, then internally there is only one name, which is the net
expression. This is obtained from the two entry areas, which should not conflict or an error will result.
Probably the best approach is to use the Net Expression entry for the complete expression, and leave
the Terminal Name entry blank. Alternatively, one could put a text name in the name entry, and the
subscripting, without a name or with the same name, in the expression entry.

It is legitimate to not provide a name, but to provide subscripting only. In this case:

1. The subscripting is ignored, except to determine the implied width (number of conductors).

2. The connector maps the scalar terminal with index value equal to the Term Index entry and
terminals with successive indices, the total number of which will be equal to the connector width.
Thus, scalar terminal order and the Term Index value are critical in this case. It is up to the
user to maintain consistency while editing, as indices may change. Probably, though, there is no
reason to use this approach, and not supply a terminal name.

If the terminal has a name, or has a bundle net expression, then the name of every scalar terminal
“bit” is well defined. These are found by name, so there is no order requirement, only an existence
requirement. Furthermore, the Term Index entry has much less significance. It is only used to assign
an order for the terminal relative to other terminals. Specifically, the terminal order is just ahead of the
scalar terminal with the same index (multi-conductor terminal index values are required to be unique).
Xic will initially assign the index as the index of the first scalar terminal referenced. This can be changed
if necessary.

Below the three entry areas is a Delete button, which will delete the terminal if pressed. This, and
all other operations, can be undone/redone with the standard Xic Tab/Shift-Tab keys and equivalent
operations in the Modify Menu.

7.25. THE SYMBL BUTTON: SYMBOLIC REPRESENTATION 213

There are two check boxes for terminal visibility in the schematic and symbol, as we saw for scalar
terminals. It is unlikely that the user would go to the trouble of implementing a multi-contact terminal
and not have it visible, but it is possible.

The Bus Term Bits group provides some specialized functions for working with the scalar terminals
referenced. These can be applied only if the terminal has a name or is a bundle terminal.

Check/Create Bits

This will create, at the end of the scalar terminal list, any scalar terminal referenced by the
present terminal and not found. Newly created scalar terminals whill have BYNAME, SCINVIS,
and SYINVIS set, meaning that the terminals will be invisible and make contact by name only. The
new terminals are placed at the same location as the present terminal. As they are invisible and
they do not connect by location, there is no problem with this. In one way or another, the scalar
terminals referenced by a multi-conductor terminal must exist for connectivity to be established,
even if they are invisible and never dealt with again after creation. The Check/Create Bits
button makes the scalar terminal creation quick and easy. Be aware, though, that it will probably
still be necessary to edit these terminals to set the physical data.

Reorder to Index
This will create missing scalar terminals as above, but in addition it will reorder the scalar terminals
list so that the index values of the referenced terminals are contiguous and start with the Term
Index value. All other considerations aside, this may be a “nice” way to organize the terminals.
It is also potentially more efficient. If the net expression does not duplicate any connection bits,
an internal mapping step can be skipped as it becomes an identity, saving a little memory and
time. This is the same ordering used with “unnamed” terminals.

The four buttons below allow setting of the visibility flags of all of the referenced scalar terminals.
It is unlikely that the flag states would vary between the bits.

The remaining buttons operate as described for scalar terminal editing.

7.25 The symbl Button: Symbolic Representation

The symbl button, available in electrical mode, allows instances of a cell to be shown as a symbol,
rather than as a schematic. In the symbolic representation, the substructure of the cell is never shown,
instead a simple figure representing the cell is displayed. This can simplify complex schematics.

When this button is active, the current cell is in symbolic mode. It is not possible to add subcircuits
or devices in this mode, but any geometry added will show as the symbolic representation. If the cell is
saved with this button active, then the cell and its instances will use the symbolic representation.

However, it is possible to apply a property to individual instances of the cell to force the display
of that instance non-symbolically (as a schematic). This property can be applied with the Property
Editor.

If the No Top Symbolic button in the Main Window sub-menu of the Attributes Menu, or in
the sub-window Attributes menu, is set, the top cell will always display as a schematic in the window,
whether or not the symbl button is pressed.

214 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

When a new cell is opened for editing, the symbl button will become active and the symbolic
representation shown if the cell was previously saved in symbolic mode. Pressing the button a second
time will revert to normal presentation.

While in symbolic mode, subcircuit terminals can not be added, however existing terminals can be
moved to new locations by dragging. One should first place the terminals, with the subct command,
in normal mode. After switching to symbolic mode, the terminals can be moved to new locations, in
the generally more compact symbolic representation. The actual locations of subcircuit connections is
dependent upon the mode.

7.26 The terms Button: Show Subcircuit Connections

L+

When the terms button is active, the electrical connection points of the subcircuits are shown. These
points are placed with the subct command. The terms button is available in electrical mode only. When
active, the physical terminals will be shown in physical mode windows, as if the All Terminals check
box in the Setup page of the Extraction Setup panel was checked. This panel is obtained from the
Setup button in the Extract Menu. Similarly, in physical mode, when physical terminals are visible,
electrical terminals will also be visible in electrical windows, as if the terms button was active.

7.27 The wire Button: Create/Edit Wires

-

The wire button is used to create or modify wires. A wire is created by clicking the left mouse
button on each vertex location in sequence. The vertices can be undone and redone with the Tab key
and Shift-Tab combination, which are equivalent to the Undo and Redo commands. Vertex entry is
terminated, and a new wire created, by clicking a second time on the last point, or by pressing the Enter
key.

The PixelDelta variable can be set to alter the value, in pixels, of the snap distance to the target
when clicking to terminate. By default, the snap distance is 3 pixels, so clicking within this distance of
the last point will terminate entry rather than add a new vertex.

In electrical mode, wires are used to connect devices into circuits. Vertices are recognized as connect-
ing points, and are created where the wire crosses a device or subcircuit terminal or a vertex of another
wire. The Connection Dots button in the Attributes Menu can be used to display connections.
The vertices can be edited to remove or reestablish connections.

In electrical mode, entering the wire command will switch the current layer to the SCED (active)
layer. The current layer can be changed if necessary, but without the reverting it was too easy to create
wires on another layer, sometimes difficult to visually differentiate, that will not be electrically active in
the schematic causing the circuit to not work.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within two pixels. When snapped, a small
dotted highlight box is displayed. This makes it much easier to create abutting objects when the grid

7.27. THE WIRE BUTTON: CREATE/EDIT WIRES 215

snap spacing is very fine compared with the display scaling. This is also applied to the last vertex of
wires being created, facilitating point list termination. This feature can be controlled from the Edge
Snapping group in the Snapping page of the Grid Setup panel.

When adding vertices during wire creation, the angle of each segment can be constrained to a multiple
of 45 degrees with the Constrain angles to 45 degree multiples check box in the Editing Setup
panel from the Edit Menu, in conjunction with the Shift and Ctrl keys. There are three modes:
call them “no45” for no constraint, “reg4b” for constraint to multiples of 45 degrees with automatic
generation of the segment from the end of the 45 section to the actual point, and “simp45” that does
no automatic segment generation. The “reg45” algorithm adds a 45 degree segment plus possibly an
additional Manhattan segment to connect the given point. The “simp45” adds only the 45 degree
segment. The mode employed at a given time is given by the table below. The Constrain45 variable
tracks the state (set or not set) of the check box.

Constrain45 not set

Shift up | Shift pressed
Ctrl up no4b reg4b

Ctrl pressed | simp45 | simp4b

Constrain45 set

Shift up | Shift pressed
Ctrl up regdb no4b

Ctrl pressed | simp45 | nodb

In physical mode, three end styles are available for nonzero width wires: Flush, Rounded, and Ex-
tended. The end style and the default width are set from the menu provided by the style button. The
end style of selected wires can be changed from this menu, from within the wire command or without.

The width of wires on a particular layer, or the widths of existing wires, can be set of changed with
the Wire Width button in the menu brought up with the style button. Zero-width wires are accepted
into the database if they contain more than one point. In physical mode, they probably should not be
used, and they will, of course, fail DRC tests. They are allowed in the off chance that the user uses
them for annotation purposes. Such lines will be invisible, however, unless the layer pattern is outlined
or solid. In electrical cells, zero-width wires are commonly used for the connecting lines, and there is no
question of their legality in electrical cells. The width of selected wires can be changed with this menu
command, from within the wire command or without.

If the first vertex of a wire being created falls on an end vertex of an existing wire on the same layer,
the new wire will use the same width and end style as the existing wire, overriding the defaults. The
completed new wire will be merged with the existing wire, unless merging is disabled. Merging can be
controlled from the Editing Setup panel from the Edit Menu, and note also that the NoMerge layer
attribute will prevent merging.

Wires with a single vertex are acceptable if the width is nonzero and the end style is rounded or
extended. These are rendered as an octagon or box, respectively, centered on the vertex.

Existing wires can be converted to polygons through selection and execution of the polyg command.

7.27.1 Wire Vertex Editor

On entering the wire command, if a wire is selected, a vertex editing mode is active on all selected wires.
Each vertex of the selected object is marked with a small highlighting box. Clicking on a selected wire
away from an existing vertex will create a new vertex, which can subsequently be moved.

216 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

In order to operate on a vertex, it must be selected. A vertex can be selected by clicking on it, or by
dragging over it. Any number of vertices can be selected. After the selection operation, selected vertices
are shown marked with a larger box, and unselected vertices are not marked. Additional vertices can
be selected, and existing selected vertices unselected, by holding the Shift key while clicking or dragging
over vertex locations. Selecting a vertex a second time will deselect it.

Selected vertices can be deleted by pressing the Delete key. This will succeed only if after vertex
removal the object does not become degenerate. In particular, one can not delete the object in this
manner.

The selected vertices can be moved by dragging or clicking twice. The selected vertices will be
translated according to the button-down location and the button up location, or the next button-down
location if the pointer did not move. While the translation is in progress, the new borders are ghost-
drawn.

All vertex operations can be undone and redone through use of the Undo and Redo commands.

With vertices selected, pressing the Esc or Backspace keys will deselect the vertices and return to
the state with all vertices marked.

While in the wire command, with no object in the process of being created, it is possible to change
the selected state of wire objects, thus displaying the vertices and allowing vertex editing. Pressing
the Enter key will cause the next button 1 operation to select (or deselect) wire objects. This can be
repeated arbitrarily. When one of these objects is selected, the vertices are marked, and vertex editing
is possible.

If the vertex editor is active, i.e., a selected wire is shown with the vertices marked, clicking with
the Ctrl button pressed will start a new wire, overriding the vertex editor. This can be used to start a
new wire at a marked vertex location, for example. Without Ctrl pressed, the vertex editor would have
precedence and would select the marked vertex instead of starting a new wire.

While moving vertices, holding the Shift key will enable or disable constraining the translation angle
to multiples of 45 degrees. If the Constrain angles to 45 degree multiples check box in the Editing
Setup panel from the Edit Menu is checked, Shift will disable the constraint, otherwise the constraint
will be enabled. The Shift key must be up when the button-down occurs which starts the translation
operation, and can be pressed before the operation is completed to alter the constraint. These operations
are similar to operations in the Stretch command.

7.27.2 Associated Net Name Label

In electrical mode, wires that participate in schematic connectivity can have an associated text label.
The text provides a name for the net (node) that contains the wire, and is equivalent to the placement
of a named terminal device (see 7.5.1) at a vertex of the wire.

To create and bind a label to a wire, first select the wire. Then, press the label button in the side
menu. Enter the text, and place the label in the normal way. The text in the label will be taken as a
candidate net name (see 7.11) for the net containing the wire.

Unlike unlabeled wires, a wire with a label will never be merged with adjacent wires. Labeled wires
play an important role in the connectivity of some schematics, by defining multi-conductor wire nets, and
providing the “taps” to access the net. Complete information is provided in the Connectivity Overview
in 4.2.7 and the sections that follow.

7.28. THE XFORM BUTTON: CURRENT TRANSFORM PANEL 217

7.28 The xform Button: Current Transform Panel

R

The xform button in the side menu brings up the Current Transform panel, which allows the
current transform to be set. The current transform is applied to newly-placed subcells, and to objects
which are moved or copied.

The transform that is applied to an instance of a cell is saved in an irreducible form in the database
representation of the instance. The irreducible form is an optional reflect-y (y — —y), followed by an
optional rotation, followed by the translation. This maps directly to the format used in GDSII files.
However, the “current transform” applies rotation before the reflection, so that on screen, a reflect-x, for
example, will flip the object’s x coordinates independent of any rotation angle, which is what users tend
to expect. The transform string printed on unexpanded instances and on the status line reflects this,
i.e., forms like “R45M” imply a 45 degree rotation followed by a reflect-y (“M” always denotes reflect-y,
reflect-x is equivalent to some other rotation and reflect-y combination). However, the transformation
shown in an Info window will be reflect-y followed by a 315 degree rotation (in this example), since the
internal representation performs the reflection before the rotation.

If the current transform is set to something other than the default identity transform, the transform
code is printed on the status line.

The following buttons and input fields are available in the Current Transform panel.

Angle
This choice menu allows setting the rotation component of the current transform. The menu allows
a choice of rotations in increments of 90 degrees in electrical mode or 45 degrees in physical mode.

Pressing and holding the Ctrl key and then pressing the left or right arrow keys cycles through the
transformation angles, whether or not the Current Transform panel is visible. The right arrow
increases the angle, the left arrow decreases the angle.

Reflect X
Add a reflection of the x-axis to the current transform. The X-reflection is toggled by the Ctrl-
Down Arrow key sequence, whether or not the Current Transform panel is visible.

Reflect Y
Add a reflection of the y-axis to the current transform. The Y-reflection is toggled by the Ctrl-Up
Arrow key sequence, whether or not the Current Transform panel is visible.

Magnification
This entry field allows setting of the magnification component of the current transform. Any
number from 0.001 through 1000.0 can be entered.

Identity Transform
This button will save the current parameters to internal storage, and reset these values to the
default state (no transformation). The saved state can be restored with the Last Transform
button.

When the panel first appears, this button will have the keyboard focus if the current transform is
not the identity transform. The user can press Enter to “press” the button. This will cause the
focus to switch to the Dismiss button, so that another Enter press will retire the panel. Thus,
one can very quickly restore the identity transform using the xform button accelerator (“xf”)
followed by pressing the Enter key twice.

218 CHAPTER 7. THE SIDE MENU: GEOMETRY CREATION

Last Transform
This button will restore the state of the current transform last saved with the Identity Transform
button, or one of the recall buttons. If no state has been saved, the identity transform (the default)
is set. Note that there is separate storage for the current transform in electrical and physical modes.

When the panel first appears, if the current transform is the identity transform, this button will
have the keyboard focus. In this case, the same key sequence as described above can be used to
quickly restore the last transform.

Store and Recall
There are five internal registers for storage of transformation parameters. Separate registers are
used in electrical and physical modes. Pressing these buttons will either save the current parameters
to a register, or set the parameters from a register. After a recall, the original parameters can be
restored with the Last Transform button.

7.29 The xor Button: Exclusive-OR Objects

7

The xor button facilitates inverting the polarity of layers, and is available only in physical mode.
The operation is similar to the box command, however all previously existing boxes, polygons, and wires
on the same layer which overlap the created box become holes in the new box. Only boxes, polygons,
and wires are inverted, other structures are covered. When a wire is partially xor’ed, the part of the
wire outside of the xor region becomes a polygon. The !layer command can also be used to invert layer
polarity, and is recommended when an entire cell is to be inverted.

While the command is active in physical mode, the cursor will snap to horizontal or vertical edges
of existing objects in the layout if the edge is on-grid, when within two pixels. When snapped, a small
dotted highlight box is displayed. This makes it much easier to create abutting objects when the grid
snap spacing is very fine compared with the display scaling. This feature can be controlled from the
Edge Snapping group in the Snapping page of the Grid Setup panel.

The box, erase, and xor commands participate in a protocol that is handy on occasion.

Suppose that you want to erase an area, and you have zoomed in and clicked to define the anchor,
then zoomed out or panned and clicked to finish the operation. Oops, the box command was active, not
erase. One can press Tab to undo the unwanted new box, then press the erase button, and the erase
command will have the same anchor point and will be showing the ghost box, so clicking once will finish
the erase operation.

The anchor point is remembered, when switching directly between these three commands, and the
command being exited is in the state where the anchor point is defined, and the ghost box is being
displayed. One needs to press the command button in the side menu to switch commands. If Esc is
pressed, or a non-participating command is entered, the anchor point will be lost.

Chapter 8

The File Menu: Xic Input/Output

The File Menu contains commands for opening, listing, and saving files and cells. The printer interface
for hard-copy plots is also found in this menu.

Some of the menu commands bring up more complicated panels which themselves may contain
various command buttons and other objects. Most of these windows can be moved by pressing the left
mouse button in the area outside of any buttons, or on a label object, and dragging the outline to the
desired location. This applies to the error message and information windows that pop up under certain
circumstances. These windows can also be deleted by double clicking with button 2 in the area outside
of buttons or other objects.

The table below lists the commands found in the File Menu, along with the internal command name
and function. The OpenAccess Libs button will appear only if the OpenAccess plug-in is loaded.

File Menu

Label Name | Pop-up | Function
File Select fsel File Selection Open file
Open open | none Open new cell or file
Save sV Modified Cells Save modified cells
Save As save none Save file, rename
Save As Device sadev | Device Parameters Electrical mode only,

apply defaults and save device
Print hcopy | Print Control Panel Hard copy plot
Files List files | Path Files Listing List search path files
Hierarchy Digests | hier Cell Hierarchy Digests | List of Cell Hierarchy Digests
Geometry Digests | geom Cell Geometry Digests | List of Cell Geometry Digests
Libraries List libs Libraries List libraries
OpenAccess Libs | oalib | OpenAccess Libraries | List OA libraries (with OA only)
Quit quit none Exit Xic

8.1 The File Select Button: Pop Up File Selection Panel

The File Select button in the File Menu brings up the File Selection panel. The File Selection
panel can be used to select files to edit, or to manage files and directories on disk. The button can be
used to bring up more than one File Selection panel, and drag/drop can be used to move files and

219

220 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

directories. From this button, the File Selection panel will list files in the current directory, but this
can be changed from the panel.

8.2 The Open Button: Open Cell or File

The Open button in the File Menu is used to read a file and/or load a cell for editing. The button
presents a drop-down menu containing the names of the last eight cells opened for editing, plus “new”
and “prev” entries. If prev is clicked, the last opened cell (if any) will be reopened in the main window.

If one holds down Shift while selecting one of cells from the history list, the Cell Placement Control
panel will appear with that cell added as the current master. This applies to cell names and not new
or prev. This is a quick backdoor for instantiating cells recently edited.

Selecting new with the Shift button held down opens a new cell with a unique name. This can
be used for experimentation, or for other purposes. The Save As command can be used to save the
contents to a cell with a more descriptive name, if desired.

Otherwise selecting new will use the prompt line to request a file or cell name to open. The internal
keyword open is associated with this button. The accelerator actually maps to the new button in the
pop-up menu, i.e., the accelerator will cause prompting for the name of a file or cell to open.

The default name used in the prompt of the cell to edit will be one of the following. Each of these
sources is tested in order, and the first one that is visible and has a selection will yield the default name.

e A selection in the File Selection pop-up from the File Select button in the File Menu.

A selection in the Cells Listing pop-up from the Cells List button in the Cell Menu.

A selection in the Files Listing pop-up from the Files List button in the File Menu, or its
Content List.

e A selection in the Content List of the Libraries pop-up from the Libraries List button in the
File Menu.

e A selection in the Cell Hierarchy Tree pop-up from the Show Tree button in the Cell Menu
or from the Tree button in the Cells Listing pop-up.

e A cell name that is selected in the Info pop-up, from the Info button in either the View Menu
or the Cells Listing pop-up.

e The name of a selected subcell in the drawing window, the most recently selected if there is more
than one.

e The next cell from the command line invoking Xic.

e The current cell name.

8.2.1 Input to the Open Command

The text given to the Open command must contain at least one and at most two names. If a name
contains white space, the name must be quoted with double quote marks ("name with space") for it
to be recognized as a single token. The first name is generally that of a multi-cell source, such as a path
to a layout file. The second name, which is optional, is the name of a cell from that source to open as

8.2. THE OPEN BUTTON: OPEN CELL OR FILE 221

the current cell. If not given, depending on the source, either a default cell is opened, or the user is
presented a list of cells from which to choose. If a single name is given, it can also be the name of a cell
in memory, or the name of a cell resolvable through a library or the search path for native cells.

In short, the first or only name given can be one of the following.

e The name of an OpenAccess library, if the OpenAccess plug-in has been loaded.
e A path to a layout file in a supported format.

e The access name of a Cell Hierarchy Digest (CHD) in memory.

A path to a CHD file on disk.

e A URL to a layout file on a remote server. This can also apply to a CHD file, but the layout file
referenced by the CHD must be available locally.

The name of a library file.

In each of the cases above, a second name can appear, giving the name of a cell to open. If no cell
name is given, the action depends on the type of source. An OpenAccess library source requires that a
cell name be given, otherwise the OpenAccess database is not consulted.

If no cell name is given and the source is a layout file containing only one top-level cell, that cell will
be opened. If there are multiple top-level cells, a pop-up will appear allowing the user to choose which
cell to open. These calls will already be in memory, the choice simply defines the current cell for editing.

If the source is a CHD and no cell name is given, the CHD’s default cell will be opened. This is either
a cell configured into the CHD, or the first (lowest offset) top-level cell found in the original layout file.
There will never be a selection pop-up with a CHD source.

If the file is a library file, the second argument should be one of the reference names from the library,
or the name of a cell defined in the library. If no second name is given, a pop-up listing the library
contents will appear, allowing the user to select a reference or cell.

The Open command can access the internet. The name given to the Open command can be in the
form of a URL, followed by options. The URL must begin with “http://” or “ftp://”, and the file is
expected to be suitable Xic input.

There is presently only one option that can follow the url:
-o filename
Ordinarily a temporary file is used for downloading, which is destroyed. The user must save the

hierarchy to retain a copy on the user’s machine. If this option is given, the downloaded file will
be saved in the given file and not destroyed.

If the name can not be resolved as a source archive as described above, it may be the name of one of
the special library files. If not, it is taken as a name for a cell. If it can not be resolved as a known cell,
a new, empty cell is created with that name.

e The name of the model or device library file.

e The name of a cell already in memory.

e The name of a cell resolvable through open libraries or the native cell search path.

222 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

e The name of a new cell to create and open.

If the name of the file given is that of the present model library (default “model.lib”) or device
library (default “device.1ib”), the library file is first copied into the current directory if it doesn’t exist
there, and the file in the current directory is then opened for text editing. These files contain the devices
and some of the models used in electrical mode for producing SPICE files.

Cells can also be opened for editing within Xic by dragging the name from a file manager and dropping
in the main drawing window, or by pressing the Ok or Open buttons in the File Selection panel. Files
can also be opened from the Open buttons in the files, cells, and contents listing pop-ups in the File
Menu. These are all equivalent to opening the cell with the Open command, so that the information
in this section applies in those cases.

If the name string given to edit matches the name of a cell in memory, the editing context is switched
to that cell, and no disk file is read in this case. However, if the name given to edit contains a directory
separation character, i.e., is a path, then Xic will always attempt to read the file from disk. Thus, if the
user wants to re-read a native cell file from disk, if the cell is already in memory, the user should add
a path prefix to the name. For example “./noname”, assuming noname is in the current directory, will
force Xic to read the disk file, even if the noname cell is already in memory.

The interpretation of any path prefix which is included with the name of a native file to open for
editing is set by the variables NoReadExclusive and AddToBack. The top level cell will always be read
from the given file if a path to the file is specified. Subcells are resolved by cell name only through the
search path. The search path is modified during the read according to the state of the NoReadExclusive
and AddToBack variables.

All of the settings in the Setup page of the Import Control panel (from the Convert Menu)
apply. However, none of the options, such as layer filtering or cell name modification, found in the Read
File page of the same panel apply in this case. If these options are needed, the Read File button in
this page should be used to read the file, rather than the Open command. Note that this is different
from pre-3.0.0 releases, in which cell name case changes and file-based aliasing were supported in the
Open command.

The table in 14.1 lists the variables and modes that apply to the Open and similar commands.

8.2.2 Reading Input With the Open Command

While a layout file is being read and processed, a log file is written. This file contains a record of
messages emitted during the conversion. If during a conversion an error or warning message is emitted,
a file browsing window containing the log file will appear when the conversion is complete, though this
can be suppressed by setting the NoPopUpLog variable. These messages also appear on the prompt line
during the conversion. The file browser is a read-only version of the text editor window (see 3.13.2).
The log files can be accessed from the Log Files button in the Help Menu.

When reading a layout file, there is a message updated periodically on the prompt line indicating
bytes read. Omne can abort the read with Ctrl-c, and a ‘y’ response to the resulting prompt. It is
advisable to clear the cells from the partially read hierarchy from memory with the Clear button in the
Cells Listing pop-up.

CGX and GDSII files that have been compressed with the GNU gzip program or have been written
in compressed form by Xic can be read in directly, whether or not the file name contains the standard
“.gz” suffix. Support for compressed files extends to CGX and GDSII only (OASIS files use a different
compression methodology).

8.2. THE OPEN BUTTON: OPEN CELL OR FILE 223

The header of a GDSII file optionally contains information about fonts, reference libraries, and other
things. This information is saved as properties of the top-level cells derived from the file, i.e., those cells
that are not used as subcells of another cell in the file. Xic does not use this information, but it will be
put back into a GDSII file subsequently written by Xic, as other applications may need this information.

When reading GDSII or OASIS input, Xic will attempt to map the layer number and data type
combinations found in the file to existing Xic layers, and if that fails a new Xic layer will be created.
This is described in the section on GDSII layer mapping (14.6).

When reading CIF, layer names are matched to those defined in the current technology in a case-
insensitive mode. This differs from native and CGX file types, which use case-sensitive matching. Layers
found in the file which do not match any in the technology are created, using default parameters.

When a cell is written to disk, it is by default written in the format of origin, though a format change
can be coerced in the Save As command by supplying a file extension. Explicit conversions can also be
performed with the commands in the Convert Menu.

If a cell is opened for editing that contains empty cells, the user is given the option of deleting these
references. If empty cells are found in the hierarchy, a pop-up appears, which allows their deletion. The
cell names listed are those that for each mode (electrical and physical) the named cell either does not
exist or has no content.

This test can be performed at any time with the !empties command. The test can be suppressed
by setting the Skip testing for empty cells check box in the Setup page of the Import Control
panel from the Convert Menu, or (equivalently) by setting the NoCheckEmpties variable.

8.2.3 Opening New Cells — Conflict Resolution

Xic keeps an internal database of all cells that have been used, by name. When a new file is opened for
editing, it may contain definitions for cells with the same name as those already in memory. Xic provides
several features for dealing with this situation when it arises.

The symbol table used to store cells can be changed. Creating and installing a new symbol table
enables Xic to start with a fresh database, though the original database can be reinstalled at any time.
There is no problem with cells of the same name existing in different symbol tables. The symbol tables
are manipulated with the Symbol Tables panel from the Cell Menu. Symbol tables are useful for
global context saving and switching, but since only one table can be installed at a time, it is generally
not possible to access cells from different symbol tables simultaneously. Cells used in a hierarchy must
exist in or be saved in the same symbol table.

When a file is being read from disk and a cell whose name conflicts with an existing cell in memory
is encountered, a Merge Control pop-up will generally appear. This allows the user to choose whether
or not to overwrite the physical and/or electrical part of the cell in memory. Press Apply to continue
with the conversion. One must press Apply for each cell where there is a conflict, or press Apply to
Rest to apply the present setting to the rest of the cells that clash. Dismissing the pop-up performs the
same function as Apply to Rest. The pop-up is removed when all conversions are done.

If the NoAskOverwrite variable is set (with the !set command), or equivalently the Don’t prompt for
overwrite instructions button in the Setup page of the Import Control panel (from the Convert
Menu) is active, no Merge Control pop-up will appear, and the default action will be used. The
default action will also be used in non-graphics (server or batch) mode.

The default action can be specified by setting the NoOverwritePhys and/or the NoOverwriteElec
variables, or equivalently by making a selection from the Default when new cells conflict menu in

224 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

the Setup page of the Import Control panel. If no choice is made by any means, the default is to
overwrite the cell in memory, both physical and electrical parts. The initial selections in the Merge
Control pop-up will reflect the settings of the default action.

8.2.4 Object Tests

While a file is being read, tests for reentrant or otherwise strange polygons are normally performed.
A polygon that is reentrant overlaps itself. This can be a problem since the polygon may be rendered
differently on different CAD systems, as the presentation of the polygon may become ambiguous. The
test is performed on physical data only. This adds a little overhead. The test is skipped if the boolean
variable NoPolyCheck is set (with the !set command). This test can also be turned off from the Setup
page of the Import Control panel.

There will also be a warning message added to the log if a polygon vertex list is modified by Xic. The
checking function will remove duplicate, inline, and “needle” vertices. This does not change the shape
of the polygon, but reduces complexity and memory use. If the file is written back to disk, the warnings
will not reappear when reading the new file.

Similarly, wire objects are also tested for rendering difficulties. Wire objects consist of a vertex
list, a width parameter, and an end style parameter. To render or otherwise process a wire, a polygon
representing the actual shape has to be generated internally, making use of these parameters. With some
parameter sets, this can be difficult or impossible. In addition, ambiguity arises between different tools
in how (for example) acute angles are rendered, and how the “rounded” end style is implemented.

Wires that are impossible or difficult to render are logged. Wires that are impossible to render are
never added to memory. Wires that are difficult to render are listed as “questionable” in the log file.
These may or may not look “good” in the Xic display. It is possible that wires that look good in Xic will
not be processed correctly in another tool, and vice-versa, so the user should be aware of the presence
of these wires.

If when reading a file a warning message about “badly formed polygons” appears in the log file, here
is how to proceed. Note the cell that contained the polygon, and edit it. Use the !polycheck command
to select the bad polygons. The Info command in the View Menu can be used to obtain the vertex list.
In many cases, the polygon will not cause problems, however it is wise to recreate one that is flagged
as bad. The Create Cell command can be used to save the bad polygons to a separate cell for further
inspection. A !split operation followed by a !join should effectively repair a degenerate polygon.

Similarly, there is a !wirecheck command that can be used to identify “questionable” wires in the
current cell. To avoid problems down-stream, these should probably be converted to polygons. This can
be done with !split/!join, or with the polygon creation command in the side menu.

By default, Xic checks for identical, coincident objects when reading input files, and prints a warning
message in the log file if such objects are found. The Duplicate item handling menu in the Setup
page of the Import Control panel can be used to set the action to perform on duplicates. Choices are
no checking at all, warn only, or warn and remove duplicates.

8.2.5 The File Selection Panel

The File Selection panel allows the user to navigate the host’s file systems, and select a file for input
to the program.

The panel provides two windows; the left window displays the subdirectories in a tree format, and

8.2. THE OPEN BUTTON: OPEN CELL OR FILE 225

the right window displays a listing of files in a columnar form. The panel is similar in operation to the
Windows Explorer tool provided by Microsoft.

When the panel first appears, the directories listing contains a single entry, which is shown selected,
and the files window contains a list of files found in that directory. The tree “root” is selected by the
application, and may or may not be the current directory. If the directory contains subdirectories, a
small box containing a ‘+’ symbol will appear next to the directory entry. Clicking on the ‘+’ will cause
the subdirectories to be displayed in the directory listing, and the ‘+’ will change to a ‘-’. Clicking
again on the ‘=’ will hide the subdirectory entries. Clicking on a subdirectory name will select that
subdirectory, and list its files in the files listing window. The ‘+’ box will appear with subdirectories

only after the subdirectory is selected.

Clicking on the blue triangle in the menu bar will push the current tree root to its parent directory.
If the tree root is pushed to the top level directory, the blue triangle is grayed. The label at the bottom
of the panel displays the current root of the tree. There is also a New Root item in the File menu,
which allows the user to enter a new root directory for the tree listing. In Windows, this must be used
to list files on a drive other than the current drive.

The Up menu is similar, but it produces a drop-down list of parent directories. Selecting one of the
parents will set the root to that parent, the same as pressing the blue triangle button multiple times to
climb the directory tree.

The New CWD button in the File menu allows the user to enter a new current working directory
for the program. This will also reset the root to the new current working directory. The small dialog
window which receives the input, and also a similar dialog window associated with the New Root
button, are sensitive as drop receivers for files. In particular, one can drag a directory from the tree
listing and drop it on the dialog, and the text of the dialog will be set to the full path to the directory.

The files listed in the files listing always correspond to the currently selected directory. File names
can be selected in the files listing window, and once selected, the files can be transferred to the calling
application. The Go button, which has a green octagon icon, accomplishes this, as does the Open entry
in the File menu. These buttons are only active when a file is selected. One can also double-click the
file name which will send the file to the application, whether or not the name was selected.

Files can be dragged and dropped into the application, as an alternative to the Go button. Files
and directories can also be dragged/dropped between multiple instances of the File Selection panel,
or to other file manager programs, or to other directories within the same File Selection panel. The
currently selected directory is the target for files dropped in the files listing window. When dragging in
the directory listing, the underlying directory is highlighted. The highlighted directory will be the drop
target.

By default, a confirmation pop-up will always appear after a drag/drop. This specifies the source and
destination files or directories, and gives the user the choice of moving, copying or (if not in Windows)
symbolically linking, or aborting the operation.

In Xic, the variable NoAskFileAction can be set to skip the confirmation. This was the behavior in
releases prior to 3.0.0, and experienced users may prefer this. However, some users may find it too easy
to inadvertently initiate an action.

If the NoAskFileAction variable is set, the following paragraphs apply.

The drag/drop operation is affected by which mouse button is used for dragging, and by pressing
the Shift and Ctrl buttons during the drag. The normal operation (button 1 with no keys pressed) for
drag/drop is copying. The other options are as follows:

226 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

Operations
Button 1 Copy
Shift-Button 1 Move
Control-Button 1 Copy
Shift-Control-Button 1 | Link
Button 2/3 Ask

Above, “Ask” means that a dialog will appear asking the user what operation to perform. Options
are move, copy, or (symbolically) link. Both the source and destinations are shown in the pop-up, and
can be modified.

If a directory is the source for a copy, the directory and all files and subdirectories are copied
recursively, as with the “~R” option of the Unix “cp” command.

Only one file or directory can be selected. When the operation is copy, the cursor icon contains a
‘+” in all cases. This will appear when the user presses the Ctrl key, if the underlying window supports
a move operation.

The File menu contains a number of commands which provide additional manipulations. The New
Folder button will create a subdirectory in the currently selected directory (after prompting for a name).
The Delete button will delete the currently selected file. If no file is selected, and the currently selected
directory has no files or subdirectories, it will be deleted. The Rename command allows the name of
the currently selected file to be changed. If no file is selected, the name change applies to the currently
selected directory.

The Listing menu contains entries which affect the file name list. By default, all files are listed,
however the user can restrict the listing to certain files with the filtering option. The Show Filter
button displays an option menu at the bottom of the files listing. The first two choices are “all files” and
the set of extensions known to correspond to supported layout file formats. The remaining choices are
editable and can be set by the user. The format is the same as one uses on a Unix command line for, e.g.,
the 1s command, except that the characters up to the first colon (‘") are ignored. It is intended that the
first token be a name for the pattern set, followed by a colon. The remaining tokens are space-separated

patterns, any one of which if matching a file will cause the file to be listed.
In matching filenames, the character ‘.’ at the beginning of a filename must be matched explicitly.
The character ‘*” matches any string of characters, including the null string. The character ‘?’ matches
any single character. The sequence [...]" matches any one of the characters enclosed. Within [...]", a pair
of characters separated by ‘-’ matches any character lexically between the two. Some patterns can be
negated: The sequence ‘["...]” matches any single character not specified by the characters and/or ranges
of characters in the braces. An entire pattern can also be negated with ‘~’. The notation ‘a{b,c,d}e’ is
a shorthand for ‘abe ace ade’.

The Relist button will update the files list. The file listing is automatically updated when a new
filter is selected, or when Enter is pressed when editing a filter string.

The files are normally listed alphabetically, however if List by Date is selected, files will be listed in
reverse chronological order of their creation or last modification time. Thus, the most-recently modified
file will be listed first.

The Show Label toggle button controls whether or not the label area is shown. The label area
contains the root directory and current directory, or a file info string. By default, the label area is shown
when the pop-up is created as a stand-alone file selector, but is not shown when the pop-up appears as
an adjunct when soliciting a file name.

When the pointer is over a file name in the file listing, info about the file is printed in the label area

8.3. THE SAVE BUTTON: SAVE MODIFIED CELLS 227

(if the label area is visible). This is a string very similar to the “ls -1” file listing in Unix/Linux. It
provides:

1. The permission bit settings and file type codes as in “1s -1” (Unix/Linux only).
2. The owner and group (Unix/Linux only).
3. The file size in bytes.

4. The last modification date and time.

While the panel is active, a monitor is applied to the listed files and directories which will auto-
matically update the display if the directories change. The listings should respond to external file or
directory additions or deletions within half a second.

The File Selection pop-up appears when the File Select button in the Xic File Menu is pressed.
Variations of File Selection panel appear when the user is being prompted (from the prompt line) for a
path to a file to open or write, such as for the commands in the Convert Menu. The Open File dialog
is used when a path to a file to open is being requested. It is almost the same as the File Selection
panel, except that selecting a file will load that path into the prompt line. The Save File dialog is used
when the user is being prompted for the name of a file to save. This does not contain the list of files
found in the other variations, but allows the user to select a directory.

8.3 The Save Button: Save Modified Cells

The Save button in the File Menu allows saving unsaved work to disk files, under the present file/cell
name.

If there are cells in memory that have been modified, the Modified Cells pop-up will appear. This
is the same pop-up that appears when exiting Xic if there are unsaved cells. It can also be invoked with
the !sv command.

The pop-up displays a listing of all modified cells and hierarchies, each with a yes/no entry that can
be toggled by the user to set whether the cell or hierarchy will be saved. The display has four columns.
Column 1 gives the name of the cell, which for a hierarchy is the top level cell.

The second column is “yes” or “no”. Clicking on this word will toggle between the two states. The
buttons at the top of the panel will set the states of all of these words: Save All sets them to “yes”,
Skip All sets them to “no”.

Initially, all normal cells in the listing will be set to “yes”, meaning that all of the listed items will
be updated on disk. If PCell submasters are being listed, then their initial state is “no”, meaning that
the master cell of a specific PCell instance and parameter set will not be written to disk. By default,
the PCell sub-masters that are created in memory when a PCell is instantiated are not listed in the
Modified Cells pop-up.

PCell sub-master cells are normally recreated in memory from the original parameterized cell defini-
tion when needed. However, there may be times when keeping a cache of PCell sub-masters is useful for
performance reasons, or to export where the original PCell is not available or the format not supported.

If the boolean variable PcListSubMasters is set, then sub-masters created in memory for PCell in-
stantiation will be listed in the Modified Cells pop-up.

228 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

The third column gives the type of file that will be created or updated. This entry is shown in color,
and the color used for archives is different than the color used for native and other single-cell files.

Xic native

CGX

CIF

GDSII

OASIS

OpenAccess

PCell sub-masters (native)

e O QWX

If a cell was read from an OpenAccess library and modified, it will (by default) be saved to the same
library. Xic can write only to OpenAccess libraries that were created by Xic or otherwise “branded”
by Xic (with the !oabrand command). This should prevent unintentional overwriting of Virtuoso cells.
Overwriting a Virtuoso cell from Xic will hopelessly clobber the cell for Virtuoso. Some day this may
work, but for now expect the worst.

If saved, PCell sub-masters will be saved as native cell files in the current directory.

The fourth column is the full path name of the file that will be written if the second column is “yes”.
In the case of OpenAccess, this will be the library name.

Xic native cells are saved under their own name, in the directory containing the file the cell was
read from, or the current directory if the cell was created within Xic. If a cell from an archive file was
modified, the hierarchy is saved in the name of the original archive file, or the top-level cell name with
an extension if the original file name is unknown. The file type is the same as the origin of the hierarchy.
The Save As button can be used to save under a different name or file type.

In all cases, the previous version of an overwritten file is given a “.bak” extension and retained (any
existing “.bak” file will be overwritten, however).

While the pop-up is visible, most other controls are inoperable. Pressing Apply - Continue, or
deleting the window, will save the files marked “yes”, retire the pop-up, and allow Xic to continue.
Pressing the ABORT button will retire the pop-up and abort the present command.

8.4 The Save As Button: Save Cell, Renaming

The Save As button in the File Menu will save to disk the cell or hierarchy currently being edited,
possibly under a new name or file type.

If editing a cell from the device library, the Save As command will bring up the Library Cell
Parameters panel (see 8.5), which allows device defaults to be edited, and has provision for saving the
cell into a device library file or as a native cell file.

Otherwise, the Save File dialog appears which provides an expandable and selectable tree represen-
tation of the directory structure, rooted in the directory where the file was originally read from, or the
current directory. The name or path to the file can be modified on the prompt line, or directories can
be selected from the pop-up which will modify the prompt line.

If the default is accepted, the cell or hierarchy will be saved in the format of origin: one of the archive
formats, or native.

The response string actually supports syntax which provides coercion to another format, and other
features. The general form of the response string is:

8.4. THE SAVE AS BUTTON: SAVE CELL, RENAMING 229

[filetype] file_path [cellname]

If the first word in the string is a recognized file format keyword, which is a known file format
suffix without the period, output will be generated in that format. The following filetype keywords are
recognized:

CGX “cgx”
CIF “cif”
GDSII “gds”, “str”, “strm”, “stream”
OASIS “oas”
OpenAccess “oa”
Native “xic”

If the first word is not one of the recognized format keywords, then it is taken as a path to the output
to produce. If this path has a file extension from the list above, meaning that the file name ends with a
period followed by one of the words from the table, this will specify that format type for output. This
does not apply to OpenAccess, however.

OpenAccess is available only if the plug-in was successfully loaded (see 2.11).

If the specified output format is one of the archive formats (CGX, CIF, GDSII, OASIS), then the
entire cell hierarchy under the current cell will be saved in the output file produced.

If saving a hierarchy in CGX or GDSII format, the file name can be given an additional, final suffix
.gz”, which will cause the file to be written in compressed (gzipped) format. These compressed files
can be read into Xic directly, and can be uncompressed using the widely available GNU gzip or gunzip
programs. Compression is supported for CGX and GDSII files only. The “.gz” suffix can be removed,
if already present, to suppress compression.

«

If the file extension given is “.xic”, then the current cell (not hierarchy) is saved in the file specified
as a native cell file. The file, and the new cell name, will include the “.xic” extension. It is usually
preferable to use the “xic filetype keyword to coerce native output to avoid changing the cell name.

There are a number of ways to save to native symbol files, as explained below. The general form is

[xic] [word] [word2]]

230

word1l
blank

word

word1

word

word

word2
blank
blank

blank

word2

CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

description

Save the current cell (only) as a native cell file in the current directory.

A literal asterisk indicates to save all cells in the current hierarchy as native cell
files in the current directory.

If word is a path to an existing directory, save the current cell as a native cell file in
that directory. If word is a path to an existing file, first move the existing file out of
the way by giving it a .bak extension, then save the cell under the given file name.
Otherwise, word is taken as a new name for the cell, which may contain a directory
path. The native cell will be saved under that name.

The first word is taken as a directory path. This directory will be created if it
doesn’t exist, if possible. The second word is a new name for the cell. This must
be a simple name, not a path. The current cell will be saved in the directory as a
native cell file using the new name.

The first word is taken as a directory path. This directory will be created if it
doesn’t exist, if possible. The literal period as the second word indicates to save the
current cell it the directory as a native cell file, using the present cell name. This
form is useful to force creation of the directory.

The first word is taken as a directory path. This directory will be created if it
doesn’t exist, if possible. The literal asterisk as the second word indicates to save
all cells in the hierarchy of the current cell, as native cell files in the directory.

The xic filetype specifier can be omitted if the source of the current cell is a native cell file. If omitted,

W

in any case if the word! is a path to an existing directory (including “.” as the current directory), the
“xic” is understood, and the behavior is as described in the table above.

To save to an OpenAccess library, the “oa” filetype must be given, any added file extensions are not
recognized. The remainder of the line is interpreted as follows:

word1l
blank

*

library

library

library

word2
blank
blank
blank

cell

*

description

The current cell is written to the library named in the OaDefLibrary variable.

If only an asterisk appears, the current cell and its hierarchy are written to the
library named in the OaDefLibrary variable.

If a single word is given, it is taken as the name of a library in which to save the
current cell. If no such library exists, the user will be prompted to create it.

If two words are given, the first word is taken as the library name as above. The sec-
ond word is the name that the current cell will be saved under, thus the OpenAccess
cell name can be different.

If an asterisk follows the library name, the current cell and its hierarchy will be
written to the library.

When a file is read into Xic, the full path to that file is saved within Xic, and that file is the default
written to during a save. The previous version of a file that has been overwritten is saved in a file in the
same directory with the same name, but with a “.bak” extension added. Cells that are created within
Xic, i.e., that do not have a known origin file, are saved by default in the current directory. This includes
native-format versions of cells that were read in as part of an archive file.

8.5 The Save As Device Button: Editing Devices

The Save As Device button appears in the File Menu in electrical mode only. If the current cell is
suitable as a device definition, meaning that the physical part is empty and there are no subcells, then
the Device Parameters panel will appear. From this panel, the default device properties can be set,

8.5. THE SAVE AS DEVICE BUTTON: EDITING DEVICES 231

and the current cell saved as a device in either a file or an updated device library.

Devices in the device library can be edited, while in electrical mode, by simply giving the device name
to the Open command or equivalent, and enabling editing mode with the Enable Editing button in
the Edit Menu. When saving, with either Save or Save As, the Device Parameters pop-up will
appear, as it will, of course, with the Save As Device button.

The panel will also appear in the Save As command if the name of the cell or file to save has been
specified as the name of the device library file (default “device.lib”). Again, the cell must contain
geometry appropriate for a device, i.e., no physical data and no subcells.

When creating a new device symbol, one can use an existing symbol from the device library as
a starting point, and save under a new name. This will tend to keep the new device size and other
characteristics similar to existing devices.

The remainder of this section describes the controls found in the Device Parameters panel.

The subct side-menu command is used to set the device connection points. The order of appearance
on the SPICE line is the same as the numerical order in the marks shown in the subct command. The
subct command creates the node properties required for electrical connection. At least one connection
point is required, unless the SPICE Prefix begins with ‘x’ or ‘X’ (indicating a macro) in which case a
connection point is not required. Thus it is possible for a macro, like a subcircuit, to connect to global
nodes only.

The Device Name entry area contains the device (cell) name. This is arbitrary and can be changed,
however a name must appear. This is the name by which the device is known to Xic, and the name that
will appear in the device selection menu.

The SPICE Prefix is one or more characters that will be prepended to the device instance lines
when a SPICE file is created. An entry in this field is usually mandatory. The pop-up will accept
anything, however the first character should match the requirements of SPICE, which expects a certain
key letter for each device, such as ‘R’ for resistors (case independent). Additional characters can appear,
and should be alphanumeric. An exception is the terminal device, which is not instantiated in SPICE,
and must have a prefix starting with the character ‘@ for internal use by Xic. In Xic, the SPICE prefix
for normal devices has no internal significance except as a unique identifier of that particular device, so
the prefix should be unique in the device library file. The prefix is saved in a name property applied to
the device.

If the prefix entry contains a second word “macro”’, then the macro flag will be set in the name
property. In this case, if the name prefix does not start with “X” or “x”, Xic will prepend an “X” to
instance calls, so that they are actually resolved as subcircuits. See the description of the name property
for implications and use of this. A model property supplies the name of the SPICE .subckt that will
be used. This must be supplied in the generated SPICE netlist by some means.

[

If the name prefix starts with “X” or “x”, it is taken as a macro whether or not the keyword is given,
to differentiate it from a normal subcircuit (which is not a “device”). A macro subcircuit is expected
to reference a .subckt macro in the model library or another source. The name of the macro is given
to instances of the device as a model property. A default model property can be supplied to the device.
In the example in the provided device and model libraries, the name of the device is “opamp”, and the
model property is given as “ua741”. There should be a file in the models subdirectories along the library
search path, or an entry in the model library file, starting with “.subckt ua741 ...” and containing
the subcircuit definition, terminated with “.ends”. Note that subcircuits and models can be intermixed
freely in the model files, but the reference names must be unique.

There is one special case: ground terminals. These have exactly one connection (a node property),

232 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

and no other properties including a name property (prefix). If this matches the current cell, and a ground
terminal in intended, then the SPICE Prefix should be left blank.

The Default Model and Default Value fields are optional for devices. Either one, but not both
can be given, providing a default model name or default value to the device. If both are given, the
Default Value entry will be ignored. These entries translate into model and value properties applied
to the device. Instances will inherit which ever of these properties is given, but they can be changed on
a per-instance basis.

If the device is a macro, i.e., the macro keyword is given or the SPICE prefix starts with ‘x’ or
‘X’, then the Default Model field is mandatory and contains the name of the subcircuit that will be
instantiated. This name should be found in a .subckt line in the model library or elsewhere.

The Default Parameters field provides a default parameter set for the device or macro. The string
can be any text relevant to the device in the context of SPICE, and will appear as a param property
when the device is instantiated. This property can subsequently be changed in the instances.

The Hot Spot button, and associated menu and entry area, allows a branch property to be applied
to the device. The branch property allows an internal value or function to be associated with a location
in the schematic symbol, which can be clicked on in the drawing to obtain the values, after a simulation.
For most devices, this will yield the current through the device. The branch property is “internal”,
meaning that it can not be changed in instances by the user.

The Hot Spot button will be active when the device contains a branch property. Pressing the button
will create the property.

The branch property contains the hot spot coordinates, which are marked on-screen with a white cross
when the Hot Spot button is active. While the Hot Spot button is active, clicking in the drawing will
move the hot spot, and the white cross, to the button-down location. The user should click to locate
the hot spot where desired in the drawing. In most of the devices in the supplied device library file, the
hot spot is located on the ‘+’ symbol that appears near the top device terminal.

The menu contains an orientation for the hot spot data. This is needed when the returned value
is a current, and indicates the actual direction of positive current flow, relative to the device symbol.
Typically, the two device terminals are oriented vertically, with the ‘+’ associated with the top terminal,
which would imply that the orientation choice should be “Down”. If a scalar value is returned, so
that there is no orientation, the correct choice would be “none”. This selection will set the style and
orientation of the plot trace marker applied when the hot spot is clicked on in the plot and iplot
(electrical side menu) commands.

The text entry provides an expression for the value to be returned. The description of the branch
property in D.3 describes this. This is the string part of the property description line, and may be empty
for inductors and voltage sources.

The No Physical Implementation box should be checked if the device will never have a direct
correspondence to geometry in the physical layout. This is true for example for voltage and current
sources. Devices with this property set will not be considered in LVS testing and will never appear in
netlists extracted from physical data. The device terminals will never appear in physical layouts. This
will apply a nophys property to the device.

Once all needed fields have been filled in, the device can be saved. The Save in Library button
will perform the following steps:

1. The device library file will be copied to the current directory, if it doesn’t already exist in the
current directory. If it does exist in that directory, the file will be copied and given a “.bak”
extension.

8.6. THE PRINT BUTTON: PRINT CONTROL PANEL 233

2. The present device is written into the device library file. If the name already appears in the file,
the existing device will be replaced. If the name does not appear, the device will be appended to
the file.

It is critical that the first line of a device description in the device library be a comment naming
the device, in the form

(Symbol: devname);

When updating the library, the process looks for lines of this form. Xic will always add this line,
but it may not be present if the file has been hand edited.

3. The modified device library is read back into Xic, and Xic is updated to use the new library.

4. The pop-up is retired, and a message indicates completion.

If, instead, it is desirable to avoid touching the device library but the user wishes to save the device,
the Save as Cell File button can be used to save the device as a native cell file.

After saving, the device selection menus are updated, in case the device was saved to a location that
was referenced in the device library, such as by a Directory keyword.

Warning: Be aware that it is not good to have cell files lying around that conflict with cells provided
by the device library, as they can potentially cause trouble. Such files should be moved somewhere safe,
at least out of the search path.

8.6 The Print Button: Print Control Panel

The Print button from the File Menu brings up the Print Control Panel for controlling hard copy
plot generation. The panel supports a variety of printers and file formats through internal drivers.

While the Print Control Panel is visible, Xic is in “print mode” where the colors and other
attributes of the main drawing window are set to those in force for the current print driver. The print
driver is selected with the Format menu in the Print Control Panel.

Each print driver can have its own set of attributes and colors, which can be set from the technology
file. Thus colors, fill, etc., can be set to provide best results from the driver. Changing the colors or
attributes while in print mode will affect the setting for the current print driver only, and the original
setting will be restored when print mode is exited. The settings applied to a driver are remembered the
next time the driver is selected in print mode.

If, after setting up print driver-specific attributes and colors, the Save Tech button is used to
generate a technology file, the file will contain the driver-specific information.

The driver-specific attributes include all of the settings from the Main Window sub-menu of the
Attributes Menu, including all grid settings other than the spacing and snapping values. Grid spacing
and snapping values carry over when switching to and from print mode. Individual layer colors, as
well as the other attribute colors used in drawing windows, can be set for the driver with the Color
Selection panel from the Set Color button in the Attributes Menu. Fill patterns are set with the
Fill Pattern Editor, from the Set Fill button. Layer visibility can be set for the driver by clicking
with mouse button 2 in the layer table. All of these settings apply only to the current print driver when
in print mode, instead of the general screen display as when not in print mode.

Not all attributes will be recognized and used by all print drivers. In particular, the “line draw”
drivers will typically ignore the fill pattern and simply draw an outline, though the HPGL and Xfig

234 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

drivers have a means to use predefined fill patterns defined in the specific interface protocol. This can
be set up in the technology file by use of the HPGLfilled and XfigFilled keywords, respectively.

When using the Image driver, a No Backg check box will appear above the driver selection menu.
When checked, image files produced will use a transparent background, meaning that existing background
will show through when the image is used in a document. This applies to PNG and other formats that
support this feature. (Qt releazes only)

The temporary file produced may be quite large in some cases. This file is created in the /tmp
directory by default. If this directory has insufficient disk space the XIC_TMP_DIR environment variable
should be set to a path to a suitable directory.

8.6.1 Print Control Panel

The Print Control Panel is a highly configurable multi-purpose printer interface used in many parts
of Xic and WRspice. This section describes all of the available features, however many of these features
may not be available, depending upon the context when the panel was invoked. For example, a modified
version of this panel is used for printing text files. In that case, only the Dismiss, To File, and Print
buttons are included. Most of the choices provided by the interface have defaults which can be set in
the technology file. The driver default parameters and limits are modifiable in the technology file. The
Print Control Panel is made visible, and hardcopy mode is made active, by the Print button in the
File Menu.

Under Windows, the Printer field contains a drop-down menu listing the names of available printers.
The initial selection is the system default printer. This default can be set with the DefaultPrintCmd
variable.

Under Unix/Linux, the operating system command used to generate the plot is entered into the
Print Command text area of the Print Control Panel. In this string, the characters “%s”i will be
replaced with the name of the (temporary) file being printed. If there is no “%s”, the file name will
be added to the end of the string, separated by a space character. The string is sent to the operating
system to generate the plot.

The temporary file used to hold plot data before it is sent to the printer is mot deleted, so it is
recommended that the print command include the option to delete the file when plotting is finished.
In Xic the RmTmpFileMinutes variable can be set to an integer to enable automatic deletion of the
temporary file.

If the To File button is active, then this same text field contains the name of a file to receive the
plot data, and nothing is sent to the printer. The user must enter a name or path to the file, which will
be created.

Xic normally supplies a legend on the hardcopy output, which can be suppressed by un-checking the
Legend check box. The legend is an informational area added to the bottom of a plot. In contexts
where there is no legend, this button will be absent. In Xic, a legend containing a list of the layers is
available. In WRspice, there is no legend.

The size and location of the plot on the page can be specified with the Width, Height, Left, and
Top/Bottom text areas. The dimensions are in inches, unless the Metric button is set, in which case
the dimensions are in millimeters. The Width, Height, and offsets are always relative to the page in
portrait orientation (even in landscape mode). The vertical offset is relative to either the top of the
page, or the bottom of the page, depending on the details of the coordinate system used by the driver.
The label is changed from Top to Bottom in the latter case. Thus, different sized pages are supported,
without the driver having to know the exact page size.

8.6. THE PRINT BUTTON: PRINT CONTROL PANEL 235

The labels for the image height and width in the Print Control Panel are actually buttons. When
pressed, the entry area for height /width is grayed, and the auto-height or auto-width feature is activated.
Only one of these modes can be active. In auto-height, the printed height is determined by the given
width, and the aspect ratio of the cell, frame box, or window to be printed. Similarly, in auto-width,
the width is determined by the given height and the aspect ratio of the area to print. In auto-height
mode, the height will be the minimum corresponding to the given width. This is particularly useful for
printers with roll paper.

The full-page values for many standard paper sizes are selectable in the drop-down Media menu
below the text areas. Selecting a paper size will load the appropriate values into the text areas to produce
a full page image. Under Windows, the Windows Native driver requires that the actual paper type
be selected. Otherwise, this merely specifies the default size of the image.

Portrait or landscape orientation is selectable by the drop-down menu. In portrait mode, the plot
is in the same orientation as seen on-screen, and in landscape mode, the image is rotated 90 degrees.
However, if the Best Fit check box is checked, the image can have either orientation, but the legend
will appear as described. If using auto-height, the legend will always be in portrait orientation.

When the Best Fit button is active, the driver is allowed to rotate the image 90 degrees if this
improves the fit to the aspect ratio of the plotting area. This supersedes the Portrait/Landscape
setting for the image, but not for the legend, if displayed.

The landscape mode is available on all print drivers. The behavior differs somewhat between drivers.
The PostScript and PCL drivers handle the full landscape presentation, i.e., rotating the legend as well
as the image by 90 degrees. The other drivers will rotate the image, however, the legend will always be
on the bottom. In this case, the image may have been rotated anyway if the Best Fit button is active,
and rotating provides a larger image. The landscape mode forces the rotation.

Xic provides a Frame button which allows a portion of the graphical display to be selected for
plotting. This sets the view produced in the print, which otherwise defaults to the full object shown
on-screen (the full cell in Xic). To set the frame, one uses the mouse to define the diagonal endpoints of
the region to be plotted. This region will appear on-screen as a dotted outline box. Deselect the Frame
button to turn this feature off, and plot the full object. In Xic, if the display contains transient objects
such as rulers, DRC error indications, or terminals, it may be necessary to use the Frame command
if these objects are not included in the cell bounding box. If the objects extend outside of the cell
boundary, they may be clipped in the plot, unless the frame is used.

The available output formats are listed in a drop-down menu. Printer resolutions are selectable in
the adjacent resolution menu. Not all drivers support multiple resolutions. Higher resolutions generate
larger files which take more time to process, and may cause fill patterns to become less differentiable.

When a PostScript line-draw driver is selected, a Line Width numeric entry area appears, which
can be used to set the width of the lines used for drawing. The value given is in points, a point being
1/72 of an inch. Different printers may respond to the specified width in different ways, depending on
physical characteristics. The default, when the line width is set to 0, is to use the narrowest line provided
by the printer. At times, using fatter lines improves visibility for presentation graphics and similar.

Pressing the Print button actually generates the plot or creates the output file. This should be
pressed once the appropriate parameters have been set. A pop-up message appears indicating success
or failure of the operation.

Pressing the Dismiss button removes the panel and takes Xic out of hardcopy mode. The same
effect is achieved by pressing the Print button in the File Menu a second time.

236 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

8.6.2 The Format Menu: Hardcopy File Formats

The printing system for Xic and WRspice provides a number of built-in drivers for producing output
in various file formats. In Windows, an additional Windows Native driver uses the operating system
to provide formatting, thus providing support for any graphical printer known to Windows. The data
formats are selected from a drop-down menu available in the Print Control Panel. The name of the
currently selected format is displayed on the panel. In Xic only drivers that have been enabled in the
technology file are listed (all drivers are enabled by default). The format selections are described below.

Except for the Windows Native driver all formatting is done in the Xic/ WRspice printer drivers, and
the result is sent to the printer as "raw” data. This means that the selected printer must understand
the format. In practice, this means that the printer selected must be a PostScript printer, and one of
the PostScript formats used, or the printer can be an HP Laserjet, and the PCL format used, etc. The
available formats are listed below.

PostScript bitmap
The output is a two color PostScript bitmap of the plotted area.

PostScript bitmap, encoded
This also produces a two color PostScript bitmap, but uses compression to reduce file size. Some
elderly printers may not support the compression feature.

PostScript bitmap color
This produces a PostScript RGB bitmap of the plotted area. These files can grow quite large, as
three bytes per pixel must be stored.

PostScript bitmap color, encoded
This generates a compressed PostScript RGB bitmap of the plotted area. Due to the file size, this
format should be used in preference to the non-compressing format, unless the local printer does
not support PostScript run length decoding.

Postscript line draw, mono
This driver produces a monochrome PostScript graphics list representing the plotted area.

PostScript line draw, color
This produces an RGB color PostScript graphics list representing the plotted area.

HP laser PCL
This driver roduces monochrome output suitable for HP and compatible printers. This typically
processes more quickly than PostScript on these printers.

HPGL line draw, color
This driver produces output in Hewlett-Packard Graphics Language, suitable for a variety of
printers and plotters. In Xic, the fill patterns are defined in the technology file with the HPGLfilled
keyword. Other fill pattern definitions are ignored. See the description of the HPGLfilled keyword
in the technology file (section A.6) for more information.

Windows Native (Microsoft Windows versions only)
This selection bypasses the drivers in Xic or WRspice and uses the driver supplied by Windows.
Thus, any graphics printer supported by Windows should work with this driver.

The Windows Native driver should be used when there is no other choice. If the printer has an
oddball or proprietary interface, then the Windows Native driver is the one to use. However, for a
PostScript printer, better results will probably be obtained with one of the built-in drivers. The

8.6.

THE PRINT BUTTON: PRINT CONTROL PANEL 237

same is true if the printer understands PCL, as do most laser printers. This may vary between
printers, so one should experiment and use whatever works best.

In the Unix/Linux versions, selecting a page size from the Media menu will load that size into the
entry areas that control printed image size. This is the only effect, and there is no communication
of actual page size to the printer. This is true as well under Windows, except in the Windows Native
driver. Microsoft’s driver will clip the image to the page size before sending it to the printer, and
will send a message to the printer giving the selected paper size. The printer may not print if the
given paper size is not what is in the machine. Thus, when using this driver, it is necessary to
select the actual paper size in use.

Xfig line draw, color

Xfig is a free (and very nice) drafting program available over the internet. Through the transfig
program, which should be available from the same place, output can be further converted to a
dozen or so different formats. In Xic, the fill patterns are defined in the technology file with the
XfigFilled keyword. Other fill pattern definitions are ignored. See the description of the XfigFilled
keyword in the technology file (section A.6) for more information.

Image: jpeg, tiff, png, etc

This driver converts into a multitude of bitmap file formats. This supports file generation only.
The type of file is determined by the extension of the file name provided (the file name should
have one!). The driver can convert to several formats internally, and can convert to many more by
making use of “helper” programs that may be on your system.

Internal formats
Extension Format
ppm, pom, pgm | portable bitmap (netpbm)
ps PostScript
jpg, jpeg JPEG
png PNG
tif, tiff TIFF

For the bitmap image formats, the driver resolution choice really doesn’t change image resolution,
but changes the size of the image bitmap in pixels. The image “resolution” is the number of pixels
per inch in the image size entries. Thus, selecting a 4x4 inch image with resolution 100 would
create a 400x400 pixel image. Note that selecting resolution 200 and size 4x4 would produce the
same bitmap size as 100 and 8x8.

Under Microsoft Windows, an additional feature is available. If the word “clipboard” is entered
in the File Name text box, the image will be composed in the Windows clipboard, from where it
can be pasted into other Windows applications. There is no file generated in this case.

On Unix/Linux systems, if you have the open-source ImageMagick or netpbm packages installed
then many more formats are available, including GIF and PDF. These programs are standard
on most Linux distributions. The imsave system, which is used to implement this driver and
otherwise generate image files, employs a special search path to find helper functions (convert
from ImageMagick, the netpbm functions, cjpeg and djpeg). The search path (a colon-delimited
list of directories) can be provided in the environment variable IMSAVE_PATH. If not set, the
internal path is “/usr/bin:/usr/local/bin:/usr/X11R6/bin”. The helper function capability is
not available under Microsoft Windows.

If the Legend button is active, the image will contain the legend. If Landscape is selected, the
image will be rotated 90 degrees.

The choice between PostScript line draw and bitmap formats is somewhat arbitrary. Although the

data format is radically different, the plots should look substantially the same. A bitmap format typically

238 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

takes about the same amount of time to process, independent of the data shown, whereas a line draw
format takes longer with more objects to render. For very simple layouts and all schematics and WRspice
plots, the line draw formats are the better choice, but for most layouts the bitmap format will be more
efficient.

The necessary preamble for Encapsulated Postscript (EPSF-3.0) is included in all PostScript files, so
that they may be included in other documents without modification.

8.7 The Files List Button: Path Files Listing Panel

The Path Files Listing panel lists the layout files found along the search path, including the files found
through redirect files. The panel can be used to open files and cells for editing and placement, among
other useful features. The file is brought up with the Files List button in the File Menu.

The panel contains a drop-down menu which has an entry for each directory in the search path,
and each directory referenced in a redirect file. The main text area lists the files found in the currently
selected directory.

File names are listed in columns. A character specifies the file type: “X” for Xic, “B” for CGX,
“C” for CIF, “G” for GDSII, “O” for OASIS, and “L” for library files. Unrecognized file types are not
listed. The directories are polled periodically, and the file listing is refreshed when changes are found.
Unfortunately, this is not available under Windows 95/98/ME. In that case, resizing the window or
popping the listing down then up again will refresh the listing.

The text area of the files listing is a drag and drop source and receiver. As a receiver, files or
directories dropped in this area will appear in the directory that contains the listed files. By default,
a confirmation pop-up will appear before any action occurs, but experienced users can disable this by
setting the NoAskFileAction variable. See the description of the File Selection panel in 8.2.5 for the
operations that can be performed via drag/drop. File names from the listing can be dragged into the
drawing windows, which will load the file into the window.

A file can be selected by clicking on the name, and while selected it will be highlighted. When a file
name is selected, the Open, Place, and Contents command buttons become active. These buttons
are inactive (grayed) unless a file name is selected.

With a file name selected, pressing the Open button will load the file into the main window, as if
the file was opened with the Open command in the File Menu. If the file is a library or has multiple
top-level cells, a window appears which enables the user to make a selection to resolve the ambiguity.
If the current cell is modified, the user will be given the opportunity to save it before switching to the
new cell.

Similarly, pressing the Place button will load the top-level cell (after ambiguity resolution, if neces-
sary) into the Cell Placement Control panel, from which it can be instantiated.

The Contents button brings up a panel which displays a listing of the cells found in the currently
selected archive file, or a list of references if the selected file is a library. This button is enabled only
when the selected file name corresponds to an archive or library (codes B, C, G, O, or L). The Contents
button makes it possible to extract individual cells and subcells from an archive file, without having to
load the whole file. It also provides access to the references contained within a library file.

The contents listing window contains Open and Place buttons. These buttons are normally grayed,
but become active when a name is selected in the contents listing. Names are selecting by clicking with
the mouse, as in the Path Files Listing panel.

8.8. CELL HIERARCHY AND GEOMETRY DIGESTS 239

Pressing the Open button will extract the named cell from the source file or library, along with its
hierarchy, and load it into the main window. If the current cell is modified, the user will be given the
opportunity to save it before switching to the new cell.

Similarly, pressing the Place button will load the selected cell into the Cell Placement Control
panel, from which it can be instantiated.

The contents listing is a drag source for drag/drop. Names from the list can be dropped into a
drawing window, with an effect similar to using the Open button. If a cell name from the contents list
is dragged and dropped into a drawing window, that cell and its descendents will be extracted from the
archive and displayed in the window.

When Xic is in CHD display mode, i.e., the Display button in the Cell Hierarchy Digests panel
is active, the Open and Place buttons in the Path Files Listing and the contents window are not
available. The Place buttons are not available in the Xiv feature set.

8.8 Cell Hierarchy and geometry Digests

Cell Hierarchy Digests (CHDs) are in-memory objects that map a cell hierarchy from a layout archive
into a compact form, and are used to extract cell data. A “bare” CHD contains an offset into the original
file for each cell, so that cell data are acquired by reading the original file.

The CHD facilitates extracting geometric information from the layout file on a per-cell basis, and is
used internally during certain operations, including windowing, flattening, and empty cell filtering.

A CHD will contain physical and possibly electrical cell hierarchy data, as extracted from an archive
file. Operations with a CHD that contains electrical data will either pass-through electrical data un-
touched, or strip it entirely. If the CHD is used to read into the database or to write a file, and there
is no windowing or flattening, the electrical data will appear in the database or in the output file. If
windowing or flattening is employed, only the physical data will be processed. The output will contain
only the physical data.

A CHD facilitates random-access to cells within the file, which in general is a reasonably efficient
process. However, if the source file is gzip-compressed (GDSII and CGX files only), random seeking can
be a very slow process, as the decompression state must evolve from the beginning of the file. Seeking
backwards requires rewinding the file and decompressing to the desired offset.

However, there is a random-access mapping option available, controlled by the setting of the ChdRan-
domGzip variable. This can speed random access into gzipped files, but requires some memory overhead.
See the variable description for more information, this feature is not available in all Xic distributions.

The CHD is designed to minimize memory use, and allows processing of huge layout files that can
not fit entirely in virtual memory in the normal database. Additional memory reduction is accomplished
by saving cell instance lists in compressed form in memory. However, this may have a small computation
overhead due to the required decompression before use. The ChdCmpThreshold variable can be used to
turn off this compression, if speed is paramount and memory use is not an issue.

Optionally, a CHD can be linked to a companion data structure, called a Cell Geometry Digest
(CGD). A CGD is a compact object that supplies cell geometry data. When a CGD is linked, cell
geometry are obtained through the CGD (if present in the CGD), instead of from the original archive
file. This can reduce access time considerably.

When using a CHD to access cell data, and the CHD has a linked CGD, and the cell data were
previously removed from the CGD, the data will be obtained from the original layout file. Thus the

240 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

CGD can be used as a kind of cache.
There are three types of CGD:

1. The “memory” CGD saves all geometry data in memory. The geometry data are highly compressed,
so that this makes sense even for very large layouts.

2. A “file” CGD instead stores offsets into a CGD file on disk. The disk file can also contain the
CHD representation. This access method is not quite as fast as the in-memory variant, but is still
generally much faster that reading the original layout file since 1) the data are highly compressed
so fewer bytes are read, and 2) the data are sorted by layer so per-layer searches are more direct.

3. A “remote access” CGD obtains geometry data from a remote host which is running Xic in server
mode. The CGD is a stub which links to a CGD in server memory, and data are returned via
interprocess communication calls.

The three types indicate the creation mode of a CGD. In fact, the data access is specified on a per-
record basis, so that a CGD could contain records of each type. The mixing of types, and specifically the
ability to bring some records into memory (i.e., caching), will be more fully developed in future releases.

The CGD contains a reference count, which is incremented when the CGD is linked to a CHD, and
decremented when unlinked. It is possible for a CGD to be used by multiple CHDs. It is not possible
to destroy a CGD while the reference count is nonzero, i.e., when it is linked to a CHD.

In Xic, CHDs and CGDs are given access names, which are used to access the CHD or CGD in
memory. These names are arbitrary but must be unique among the CHDs or CGDs. They may be
assigned by the user or generated within Xic.

The Cell Hierarchy Digests panel, from the Hierarchy Digests button in the File Menu is the
main entry point for creation and manipulation of CHDs. Similarly, the Cell Geometry Digests panel
from the Geometry Digests button in the File Menu is the main entry point for CGD creation and
manipulation. These two panels provide the GUI interface to CHD/CGD creation and manipulation.

In most if not all Xic commands that prompt for the name of a layout file, instead of a file name,
the access name of an existing CHD can be given, or the name of a saved CHD file can be given. In the
latter two cases, the command obtains geometric data through the CHD, which can be much faster, but
operates as one would expect if directly giving the name of the referenced layout file.

However, a linked CGD provides only physical data, and properties and text labels are stripped.

8.9 The Hierarchy Digests Button: List Cell Hierarchy Digests

The Hierarchy Digests button in the File Menu brings up the Cell Hierarchy Digests listing
of the Cell Hierarchy Digests (CHDs) currently in memory. A CHD is a compact representation of
a cell hierarchy, which facilitates access to data on a per-cell basis. The CHD and companion Cell
Geometry Digest (CGD) data structures provide a foundation for many of the operations in Xic, including
windowing, flattening, and empty cell removal. An overview of CHD/CGD capabilities was provided in
the previous section.

Each saved CHD has a unique but otherwise arbitrary access name. The access name is initially
assigned by the user or generated by Xic.

The listing consists of the CHDs by access name. The middle column in the CHD listing will show
the name of a linked CGD, if any. The right column lists the source file name and default top-level cell.

8.9. THE HIERARCHY DIGESTS BUTTON: LIST CELL HIERARCHY DIGESTS 241

Most Xic commands that take a layout file path as input will accept a CHD access name. The
command will operate with the data obtained through the CHD, which can be identical with that from
the original layout file, but operations will in general proceed more quickly.

Clicking on one of the rows in the listing will select that CHD. The selected CHD is acted on by
most of the command buttons arrayed along the top of the panel, which provide the following functions.

Add
This button brings up the Open Cell Hierarchy Digest panel (described in 8.9.1) which allows
a new CHD to be created and added to the list.

Save
A CHD can be saved to a file, and recalled into memory later. This button produces the Save
Hierarchy Digest File pop-up that solicits a file name/path into which a representation of the
currently selected CHD will be saved. A previously saved CHD can be recalled with the Add
button.

If the Include geometry records in file check box in the pop-up is checked, geometry records
will be included in the file. These records are effectively a concatenation of a Cell Geometry Digest
file representation. Layer filtering (see 14.5) can be employed to specify layers to include, through
the layer filtering control group which is activated when including geometry.

The resulting file is a highly compact but easily random-accessible representation of the layout file.
However, it does not include text labels, properties, or electrical data.

Delete
The presently selected CHD is destroyed, after confirmation.

Config
This brings up the Configure Cell Hierarchy Digest panel (described in 8.9.2) which enables
configuration of the CHD. There are two attributes that may be configured: the assumed top-level
cell in the hierarchy, and the linking of a CGD for geometry access. The pop-up provides control
of these attributes.

Display
When this toggle button is pressed, the main window and new sub-windows display the cell hier-
archy in the CHD. Editing is not possible in any window in this mode, so the side menu becomes
invisible. The display is very similar to that of the normal display mode. The usual zoom-
ing/panning, expansion, and other modes apply, though no selection operations are available. In
CHD display mode, the Edit, Modify, DRC, and Extract menus are unavailable, and various
other functions in the other menus are unavailable.

When the Display button is pressed, a small pop-up appears, which allows the user to select an
area to display before the image is created, which is compute intensive and time consuming. The
user should enter the center x and y and display width (in microns) of the region of the top-level
cell to be displayed. Pressing Apply will create and display the image. Alternatively, the Center
Full View button can be pressed to display the entire cell.

The features in the display are obtained through the CHD, and thus no additional memory is
required than that used by the CHD itself. Since the CHD occupies a small fraction of the memory
required to hold the originating layout file in the main database, very large files can be viewed,
much larger than files viewed the normal way for a given amount of available system memory.

The row in the CHD listing that is currently being displayed is marked, by an “open” icon in
Windows, or by a different background color. This display mode will persist as long as the Display
button is active, whether or not the pop-up is visible.

242

CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

The root cell in the display is initially the default cell from the CHD. This cell can be specified in
the pop-up from the Config button. If no cell name is specified, the top-level cell in the CHD (a
cell not used as a subcell within the CHD) with the lowest offset (there may be more than one)
is assumed. If a Cell Geometry Digest (CGD) has been linked to the CHD in the configuration
panel, the displayed geometry is obtained from the CGD. In this case, text labels, which are never
included in the CGD database, are absent from the display.

Drag and drop can be used from the contents listing (below) to change the root cell in the display.
This does not change the default cell of the CHD, and only applies to the display in the drop-target
window.

Contents

This button brings up or updates a listing of the cells in the currently selected CHD. The cell
names can be selected by clicking in the listing. Only cells which correspond to the current display
mode (physical or electrical) are shown.

The contents listing pop-up contains Info, Open, and Place buttons, which are active when a
name is selected. Pressing Info will display info about the selected cell, as saved in the CHD.
Pressing Open will extract the selected cell and its hierarchy from the source file into the main
database, and display it in the main window, as if opened with the Open button in the File
Menu. Pressing Place will likewise extract the cell hierarchy, but load it into the Cell Placement
Control panel for instantiation.

The contents listing is enabled as a drag source. If an item is dragged to a drawing window and
dropped the following will happen. If the drop window is displaying the CHD (the Display button
is active), the window display will become rooted in the dropped cell. Nothing new is read into
memory. If the drop window is in normal display mode, the cell and its hierarchy will be read from
the CHD’s source into the main database, and the cell will be displayed. Note that this can cause
out-of-memory problems if one isn’t careful.

Cell

Info

It is possible to create “reference cells” in the main database that reference the CHD. These cells
are otherwise empty, but when placed in a layout, and the layout is saved to disk, the hierarchy
from the CHD will be written into the output file. See 8.9.3 more more information about reference
cells.

This can be used to assemble a top-level cell or reticle containing very large amounts of data, far
more than can be kept in memory in the usual way.

Pressing the Cell button will solicit the name of the reference cell. This is the name of a cell
found in the CHD, and will also be the name of the reference cell created in memory. The pop-up
is initially loaded with the name of the default cell of the CHD, but another cell name can be
dragged from the contents listing or entered manually.

Pressing Apply in the solicitation pop-up will create the reference cell in memory.

In normal editing mode, the reference cells can be placed in the normal way (though they appear
to have no content — they display as an empty box). The reference cells can be saved as native
cells, in which case they remain as reference cells, and can be loaded into Xic just as any native
cell.

When a reference cell is written to an archive file such as GDSII or OASIS, the reference cell is
replaced by the cell and its hierarchy, as extracted from the original layout file.

Reference cells cannot be flattened with the Flatten command, they will simply disappear.

Pressing this button will bring up or update a window containing information about the currently-
selected CHD.

8.9. THE HIERARCHY DIGESTS BUTTON: LIST CELL HIERARCHY DIGESTS 243

? (quick info)
This button brings up “quick info” about the currently selected CHD, including the full path to
the source file. The same information can be obtained from the Info button, but this is much
more extensive and may take some time to compute. The quick info is instantaneous.

Help
This brings up the help window describing the Cell Hierarchy Digests pop-up.

The buttons and controls below the listing window provide general CHD-related functions, that do
not make use of selections in the listing.

Use auto-rename when writing CHD reference cells
This mode applies when writing a cell hierarchy containing reference cells. A reference cell is a
cell in memory that has no content of its own, but rather serves as a pointer to a cell hierarchy
obtained through a CHD (Created with the Cell button described above). When such cells are
encountered when writing a hierarchy from the main database, the reference cell is replaced with
the hierarchy obtained through the referenced CGD.

When writing CHD reference hierarchies, there are two algorithms that can be employed that
prevent writing duplicate cell names. When this check box is not checked, cells encountered with
the same name as a cell previously written will be skipped, i.e., no new cell definition will be added
to the output file, and all subsequent instances of the cell will call the existing definition.

When this box is checked, and a duplicate cell name is encountered, and the existing definition
came from a different CHD, the name is changed and a new cell definition is added to the output
file. References to the cell will call the cell by its new name. However, name clashes from equivalent
CHD’s will cause the new cell definition to be skipped, as in the default mode. An “equivalent
CHD” can mean the same CHD in memory, or a different CHD but opened on the same file with
the same aliasing.

This button tracks the state of the RefCellAutoRename variable.

Load top cell only
When a cell is brought into the main database through a CHD, if this box is checked:

1. Only that cell, and not its subcells, will be loaded into the main database. Any subcells of
the cell become reference cells (see 8.9.3) in the main database.

2. The name of the cell will be added to the override table.

This allows editing of the requested cell, and when written to disk the complete hierarchy will
appear, however loading the whole hierarchy into memory is avoided.

This check box tracks the state of the ChdLoadTopOnly variable.

Fail on unresolved
This check box tracks the state of the ChdFailOnUnresolved variable. When set, when using a
CHD to access cell data and a cell is found that can’t be resolved in the source file or through the
library mechanism, the operation will halt with a fatal error. If not set, processing will continue,
with the non-references either being ignored (e.g., when flattening), or converted to empty cells
(when reading into the database), or propagated to output (when writing output), depending on
the operation.

Use cell table
When checked, when a CHD is used to access cell data, cells found in the override table (see 8.9.4)

244 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

will override those in the source. Depending on settings, such cells may be effectively replaced by
cells in memory, or simply skipped.

This check box tracks the state of the UseCellTab variable.

Edit Cell Table
This button displays the Cell Table Listing panel. This enables editing of the list of cell names
that are treated specially during CHD file-access operations, the “override table”.

Default Geometry Handling
This menu sets the default way to handle geometry records found when reading a saved CHD file.
This mode will apply when a CHD file name is given as input for a command (which is generally
possible for commands that are soliciting a layout file), and there is no specific means of controlling
the geometry record processing.

There are three choices. The initial default is to create a memory-type CGD from the geometry
records, and link it to the CHD. In this case, all geometry data will reside in memory, which
makes sense even for very large designs as the data are highly compressed. The second option is
to create a file-type CGD and link it to the CHD. In this type of CGD, geometry is obtained from
the geometry records in the CHD file when needed, and does not reside in memory. The third
option is to ignore the geometry records, and therefor not create a linked CGD. Geometry will be
obtained from the original layout file in this case (the original layout file must still exist in the
same location as when the CHD file was created).

8.9.1 The Open Cell Hierarchy Panel

This panel specifies a path to a layout or saved Cell Hierarchy Digest (CHD) file, from which a new CHD
will be created in memory and added to the Cell Hierarchy Digests listing. The panel is brought up
with the Add button in the Cell Hierarchy Digests panel.

The panel provides two separate “notebook” tabs that specify the type of file to read: layout file or
saved CHD file. The notebook pages expose the controls applicable to the type of input, however either
type of file can be entered in the entry area of either page. The tabs serve to simplify the panel.

All cell hierarchy data, both physical and electrical, will be extracted from a layout file. However,
if the LockMode variable is set while in physical mode, the electrical data, if any, will be omitted. If
the source is a saved CHD file, the CHD in memory will be recreated verbatim, ignoring current mode
settings.

When the source is a layout file, systematic cell name modifications can be applied, if desired. This
is sometimes useful for avoiding name clashes. If cell name modification is used, the modified names
must be used when specifying a cell to the new CHD, the original cell names are not retained.

When reading a layout file, it is possible to save some statistical information in the CHD, regarding
counts of the geometrical objects in the file. This information will increase the size of the CHD in memory,
with the bottom selection requiring the most memory, the top selection the least. The information saved
is counts of the number of boxes, polygons, and wires seen. The choices are:

no geometry info saved
Don’t save any statistical information.

totals only
This is the default, the totals for the file will be available.

8.9. THE HIERARCHY DIGESTS BUTTON: LIST CELL HIERARCHY DIGESTS 245

per layer counts
The total counts for the file will be available for each layer used.

per cell counts
The counts will be available for each cell in the file.

per-cell and per-layer counts
The counts will be available for each layer used in each cell.

This information will be printed in the Info window of the Cell Hierarchy Digests pop-up. The
file totals are shown in the CHD info, which is shown when there is no selection in the Contents window.
The per-cell counts are shown in the Info window when a cell name is selected in the Contents listing.

If the CHD is going to be used in an operation with layer filtering, it is recommended that per-cell
and per-layer counts be selected, as this allows efficient removal of cells made empty by the layer
filtering (see 14.10).

If the file name specified is a saved CHD file (previously created from the Save button in the Cell
Hierarchy Digests pop-up), then the other entries (cell name mapping and geometry counts) are
ignored. The cell name mapping is retained from the original CHD that was saved. The geometry
counts are presently discarded when a CHD is saved.

If the CHD file being read contains geometry records, the processing of these records can be specified
by the radio buttons in the CHD file page. There are three choices. The first option is to create a
memory-type CGD from the geometry records, and link it to the CHD. In this case, all geometry data
will reside in memory, which makes sense even for very large designs as the data are highly compressed.
The second option is to create a file-type CGD and link it to the CHD. In this type of CGD, geometry
is obtained from the geometry records in the CHD file when needed, and does not reside in memory.
The third option is to ignore the geometry records, and therefor not create a linked CGD. Geometry
will be obtained from the original layout file in this case (the original layout file must still exist in the
same location as when the CHD file was created).

These options are identical to default options which can be set from the Cell Hierarchy Digests
panel, but the present panel overrides the default setting and applies only to the current operation.

8.9.2 The Configure Cell Hierarchy Digest Panel

The Config button in the Cell Hierarchy Digests panel brings up the Configure Cell Hierarchy
Digest panel, with which it is possible to change the default top cell of a Cell Hierarchy Digest (CHD),
and to link a Cell Geometry Digest (CGD) which can accelerate geometry record access.

The present default top-level cell name is shown in the editable area near the top of the pop-up. In
an unconfigured CHD, the default top-level cell is the first cell encountered in the layout file that is not
used as a subcell by any other cell in the file. Any cell defined in the file can be assigned as the top-level
cell of the CHD. In any operation involving the CHD when a top-level cell is not otherwise specified,
the configured cell will be taken as the default.

To configure a new top-level cell, use the Contents listing of the Cell Hierarchy Digests panel, if
necessary, to identify an alternate cell name. Note that this is the name after any cell name modification
is applied. A cell name can be dragged from the contents listing and dropped in the entry area, or the
name can be entered manually.

Pressing the Apply button in this group will complete the cell name configuration. The label of the
Apply button will change to “Clear”, and the controls in this group will be grayed. The label at the

246 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

top of the panel will indicate that a top-level cell has been configured. Pressing Clear will un-configure
the top-level cell, reverting to the default.

The Last button will recall the last cell name used, if any.

A Cell Geometry Digest can be linked to the CHD. In this case, geometrical data retrieved through the
CHD will be obtained from the CGD, and not the original layout file. This linking can be accomplished,
or removed, with the lower group of controls.

To link an existing CGD, one enters its access name into the CGD name entry area. This is the
name shown in the first column of the Cell Geometry Digests listing. Pressing the Apply button in
this group will perform the link, gray the entries, and the button label will change to “Clear”. The label
text at the top of the panel will indicate that the CHD is now configured “with geometry”. Pressing the
Clear button will reverse the process.

If the name in the CGD name entry area matches an existing CGD, that CGD will be linked,
whatever the status of the Open new CGD check box. If Open new CGD is checked, and the CGD
name is empty or a non-matching name, a new CGD will be created, and either saved under the name
given, or assigned a new name by Xic if no name is given.

Pressing Apply when a new CGD is to be created will bring up the Open Cell Geometry Digest
panel. This allows setting up parameters in the new CGD as needed. Pressing Apply in this panel
will complete the operation, as reflected by the state shown in the Configure Cell Hierarchy Digest
panel. The new CGD will be listed in the Cell Geometry Digests panel, if it is visible.

When a CGD is created in this manner, specifically for linking to a CHD, the new CGD will be
automatically destroyed when unlinked from the CHD (or when the linking CHD is destroyed). One can
see the CGD disappear from the Cell Geometry Digests panel when unlinked (Clear is pressed) in
this case.

Please note that there is no way for the CHD to know whether the linked CHD applies to the same
original layout file. Linking to a CHD produced from a completely different layout will “succeed”, and
there will be no errors even in use. As geometry is being read, if a cell is not found in the linked CGD,
no geometry will be returned, and the cell will appear to contain no geometry. If is up to the user to
make sure that CHD and linked CGD cell name spaces are compatible.

8.9.3 Reference Cells

Reference cells are “pseudo cells” which exist in memory or on disk as native cell files only. These cells
contain no content, but instead reference another cell hierarchy. Reference cells have the same name as
the top-level cell assumed in the referenced hierarchy. Reference cells can be used with physical layout
data only.

When reference cells are placed in a layout, and the layout is written to an archive file format on
disk, the reference cells are replaced with the hierarchy referenced.

Reference cells can be created from the Cell Hierarchy Digests panel, with the Cell button.

Here is an example to illustrate how reference cells may be created and used. Assume that we have
a file named “input.gds” that contains a cell named “input_top.

From the ell Hierarchy Digests panel, the Add button is used to create a CHD for input.gds.

The resulting CHD is selected in the listing, and the Cell button is pressed. A pop-up will appear
requesting the name for the cell. The default name is the default top-level cell for the CHD, or the
configured name. If this is not our desired name “input_top”, the text is changed accordingly, and

8.9. THE HIERARCHY DIGESTS BUTTON: LIST CELL HIERARCHY DIGESTS 247

Apply is pressed. The reference cell will be created in memory (it will be listed in the Cells Listing
panel).

If memory is tight, the CHD that was just created can be deleted. It will be recreated if necessary.
The Cell Hierarchy Digests panel can be dismissed.

The user can view the new cell with the Open command. Note that it has a bounding box, but no
content. Trying to modify the cell by adding a box, for example, will fail. Reference cells are immutable
- meaning read-only.

The reference cell named “input_top” is ready to be placed into another hierarchy. One can begin
editing a new cell, assume that it is called “foo”. The user will be asked whether to save the previous
(reference) cell. The reference cell can be saved as a native cell, however it is not possible to change the
cell name. The cell can be saved in this manner if the user wants a copy which can be reused in the
future. Incidently, it is possible to coerce saving of a reference cell to an archive format, as usual, in
which case the new file will contain the referenced cell hierarchy.

The user should make sure that the current expansion level is set to 0. When editing “foo”, the place
button in the side menu can be used to place one or more instances of “input_top”, perhaps using the
Current Transform to rotate, mirror, or magnify the instances. This will be no different than placing
normal instances. The bounding boxes of the newly placed cells will be visible, as normal, however if
the expansion level is increased, the bounding boxes disappear and there is no visible indication of the
newly place cells, except that the overall bounding box encompasses them. Again, the reference cells
have no content.

The hierarchy under foo can be saved to an archive format in the usual manner, for example one
can type “sav” in the drawing window or press the Save As button in the File menu. In response to
the prompt, one can enter “foo.gds”, for example, to produce a GDSII file, and press Enter. The user
should then confirm saving to GDSII format at the confirmation prompt, and the file foo.gds will be
created.

To have a look at the new GDSII file, the user can clear the database with the Symbol Tables
pop-up or by typing “!!Clear(0)”. Then, the Open command can be used to open foo.gds. The
unexpanded display will look the same as before, but note now that when expanded, the contents of the
cells are displayed, as obtained from the input.gds file, but this content is now included in foo.gds.

This procedure serves a similar purpose to the Layout File Merge Tool and the !assemble
command, but is graphical and easier to perform. It enables assembling a higher-level layout file from
lower-level component files. Since the component files don’t have to be in memory, one can assemble
huge layouts with a modest computer, using any of these techniques.

Reference Cell Structure

A reference cell is basically an empty physical native cell with a refcell property (property number 7150,
as described in D.1). This property contains the information that ties the reference cell to a source and
provides a bounding box. A complete example of a reference cell is shown below,

(Symbol asic2);

(xic 4.2.9 LinuxRHEL7_64 03/01/2016 04:36 GMT);

(PHYSICAL) ;

(RESOLUTION 1000);

(CREATED 3/1/2016 4:36:34, MODIFIED 3/1/2016 4:36:34);

5 7150 filename="/usr/local/cad/layouts/asic2.gds" cellname=asic2

248 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

bound=0.000,0.000,2328.100,2543.700;
9 asic2;
DS 0 1 1;
DF;
E

This reference cell is a stand-in for a cell named “asic2” which is found in the path given. Note
the simple form of the cell, particularly realizing that the comment lines (enclosed in parentheses) are
optional. It is completely feasible to create reference cells with a text editor. The only reason that the
CHD was used is that it provides the correct cell bounding box. The bounding box is used in the display,
but does not affect the actual location or size of the cell hierarchy when expanded.

8.9.4 The Cell Table Listing Panel: Set Override Cells

Whenever a Cell Hierarchy Digest (CHD) is used to access a cell hierarchy for any purpose other than to
read the cells into the main database, a cell substitution mechanism can be employed. This mechanism
is enabled by setting the UseCellTab variable, or the Use cell table check box in the Cell Hierarchy
Digests panel.

Each symbol table contains a hash table for cell names, which is used as the ”cell override table”
when working with CHDs. The Cell Table Listing panel lists the cell names in this table, for the
current symbol table. This panel is made available through the Edit Cell Tab button in the Cell
Hierarchy Digests panel.

The names listed in the table are cells found in the global string table for cell names. This includes
the names of cells read into memory, and the names of cells referenced in CHDs in memory. The names
persist even if the corresponding cell or CHD is removed from memory, until a global clear is performed
with the ClearAll script function.

The panel provides the following buttons to manipulate the table contents.

Add
The Add button produces an entry form that allows the user to enter a new cell name into the
table. The name given must be that of a cell previously opened or referenced by a CHD, as
explained above.

The listing window is also sensitive as a drop receiver, so that cell names can be dragged/dropped
from other windows, such as the Cells Listing panel, or the Contents listing of the Cell Hier-
archy Digests panel.

If a cell is read into the main database from a CHD, and the ChdLoadTopOnly variable is set, then
the cell will automatically be added to the table.

The state of the ChdLoadTopOnly variable (set or not) tracks the state of the Load top cell only
check box in the Cell Hierarchy Digests panel.

Remove
This button allows names to be removed from the table, individually.

Clear
The Clear button will remove all names from the table, after confirmation.

Override and Skip
These two mutually-exclusive selections set how entries in the table are to be used. When Override

8.9. THE HIERARCHY DIGESTS BUTTON: LIST CELL HIERARCHY DIGESTS 249

is selected, listed cells that exist in the main database will override the cell in the CHD, as described
below. If an override cell does not exist in the main database in the current symbol table, the
operation will fail with an error.

If Skip is selected, the cells will simply be skipped. This is applicable when writing an archive file
via a CHD, in which case cell definitions for the override cells will not appear, however references to
the cells will remain. The file will require the library mechanism or some other means of satisfying
the references when the file is read. In this mode, it does not matter whether or not the named
cells exist in the main database.

These two choices track the state of the SkipOverrideCells variable.

The table can also be maintained through use of the script functions described in F.4.3.

When a CHD is accessing cell data, if overriding is enabled and the cell name matches a name in the
table, the CHD will access the cell in main memory and not from any other source. The contents of the
cell will be streamed recursively, however only subcells with names that are also in the table will have
cell definitions included. Subcells that are not included in the table should exist in the CHD, otherwise
there will be an undefined cell in output.

Note that substituting cells will not prevent the CHD from outputting cells that, given the substi-
tutions, are not used in the hierarchy. For example, suppose cell A in the CHD has an instance of cell
B, and this is the only instantiation of B. Consider that A is overridden by a version that does not
instantiate B. In the current release, the output file will contain B, as an unused cell (top-level).

As an example of how the override mechanism and related features can be used, imagine that we
have a large GDSII layout file, and we would like to make a small modification to the top-level cell.
Suppose that the file to too large to load into main memory in the usual way for editing.

The first step is to create a CHD for the file, using the Cell Hierarchy Digests panel from the
File Menu. The Add button can be used to create the CHD, which will be listed on the panel.

Next, we grab the cell that we wish to modify into the main database. Select the CHD and press the
Contents button in the Cell Hierarchy Digests panel. A listing of all cells in the file will appear,
with the top-level cells listed first, with an asterisk.

Press the Load Top Cell button. With this button pressed, when a cell is opened in the main
database from the CHD, only that cell, and not its complete hierarchy, will be opened in memory. This
is important, since we know that the complete hierarchy of the cell we plan to edit will not fit in memory.

In the content listing, drag the name of the cell to be edited to the main drawing window and drop it
there. The cell will be displayed, and is ready for editing. Note that, when unexpanded, all of the subcells
appear normal, however when expanded, they disappear. The subcells are actually CHD reference cells,
which have no content but serve as a pointer to the CHD when the subcell data is needed.

Once the appropriate changes have been made, there are two ways to save the modifications. The
first way relies on the assumption we made earlier that the cell being edited is the top-level cell in the
hierarchy. Since this is so, we could simply save the current cell as GDSII. When saving, the reference
cells are expanded to the full hierarchy during writing.

The second method illustrates the use of the override cells. Press the Edit Cell Tab button to bring
up the editor window for the override cell table. The cell of interest will already be listed, since it was
automatically inserted when it was opened for editing from a CHD when the Load Top Cell button
was active.

Press the Use Cell Tab button in the Cell Hierarchy Digests panel, which will enable use of the
override table.

250 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

In the Convert Menu, press the Conversion button to bring up the Conversion panel. At the
top of the Conversion panel, set the Input Source to Cell Hier Name, select the GDSII output
format tab, then press the Convert button. When prompted, give the name of the CHD we created,
from the Cell Hierarchy Digests panel, it will be something like “CellHier1”. Then, give the name of
a GDSII file to create. The new file will contain the modifications we performed.

8.10 The Geometry Digests Button: List Cell Geometry Di-
gests

This panel, brought up with the Geometry Digests button in the File Menu, provides a list of Cell
Geometry Digests currently in memory. A Cell Geometry Digest (CGD) is a per-layer/per-cell database
of highly compacted representations of cell geometry. Logically, a cell name and layer name are passed to
the database, which returns a data block which when expanded yields a representation of the geometry
on the given layer in the given cell. The database contains no information about cell instances, and text
labels and object properties are excluded.

This is basically a companion to the Cell Hierarchy Digest (CHD), which contains hierarchy informa-
tion but no geometry information. The two data types together provide complete physical information
about the file.

A CGD can be linked to a CHD. After linking, the CHD will retrieve needed geometrical information
from the linked CGD, rather than from the original layout file. This can be faster, since the CGD
geometry data may be in memory, and are sorted by layer and compacted. Even with all geometry
data residing in memory, the combined size of the CHD/CGD structures is still much smaller than the
memory required for loading the original layout file into the main database in the normal way. The main
database, however, provides the spatial sorting for fast access of objects at a given location, which is
absent in the CHD/CGD combination.

Each saved CGD is given a unique but otherwise arbitrary name, which is used to access the CGD.
The CGDs presently in memory are listed by name, and can be selected by clicking.

The listing contains a middle column labeled Type, Linked, which will contain Mem, File, or Rem
indicating the geometry storage type of the CGD. This will be followed by yes if the CGD is linked to
a CHD. An asterisk ‘*’ will follow yes if the CGD will be destroyed when unlinked from its CHD. The
right column contains the source file name, if any. The Info button will provide more information about
the CGD, including the full path to the source file.

The selected CGD is used as input for operations initiated by the row of buttons arrayed across the
top of the panel. These buttons are:

Add
This button brings up the Open Cell Geometry Digest panel, from which a new CGD can be
created and added to the list (see 8.11).

Save
The currently selected CGD can be saved to a file, for later recall. This button brings up a
pop-up which solicits a name for this file. Pressing Apply will save the selected CGD to a disk
representation in the given file path. A previously saved CHD can be recalled into memory from
the panel brought up by the Add button.

Delete
This will destroy the selected CGD, after confirmation. Only CGDs that are not currently linked

8.11. THE OPEN CELL GEOMETRY DIGEST PANEL 251

to a CHD can be destroyed.

Contents

This will pop up or update a listing of the cells found in the selected CGD. With a name selected,
the Info button becomes active. Clicking Info will pop up or update another window, which lists
the layers used in the selected cell. Only layers that have associated geometry are saved in the
CGD. Each layer is listed with two numbers, representing the size of the compressed data stream
for the layer (’c’) and the uncompressed size ('u’). These aren’t particularly useful to the user, but
do give some indication of how much geometry is associated with each layer. Beware, however,
that gigabytes of replicated features may be represented by only a few bytes.

Info
This button pops up a window listing information about the selected CGD. The information
includes the type of CGD, and other parameters such as memory use, cell count, etc.

8.11 The Open Cell Geometry Digest Panel

This panel is used to create a new Cell Geometry Digest in memory, which is added to the listing
in the Cell Geometry Digests panel. This panel is brought up with the Add button in the Cell
Hierarchy Digests panel.

There are three “notebook” tabs that correspond to the three types of CGD. Each corresponding
page contains controls for setting the parameters appropriate for the selected CGD type.

in memory
The in memory tab corresponds to a “memory” CGD. This type of CGD saves all geometry data
in memory. The geometry data are highly compressed, so that this makes sense even for very large
layouts.

The source from which to create the CGD is entered into the entry area at the top of the page.
The source can be one of the following:

1. A path to a layout (archive) file.
2. The access name of a CHD already in memory.
3. A path to a saved CHD file.

4. A path to a saved CGD file.

If the source is a layout file, one can apply layer filtering as the file is being read. It is also possible
to apply cell name mapping. If mapping is employed, layer data are accessed via the modified cell
names. If the CGD is to be linked with a CHD, the cell name mapping, if any is used, should be
the same when creating the CHD and the CGD. The control groups below the entry expose the
layer filtering and cell name mapping capabilities.

If the source is a CHD access name, or a CHD file, the cell name mapping is automatically set to
the same as was used in creating the CHD. The layer filtering is available if the source is a CHD
access name, or if the source is a CHD file saved without geometry records (with the Save button

252 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

in the Cell Hierarchy Digests panel). If the source is a CHD file containing geometry records,
the CGD uses those geometry records verbatim.

If the source is a saved CGD file (from the Save button in the Cell Geometry Digests panel),
the CGD will import this file verbatim.

file reference
The file reference tab corresponds to a “file” CGD. This type of CGD stores offsets into a CGD
file on disk. The disk file can potentially also contain a CHD representation. This access method
is not quite as fast as the in-memory variant, but is still generally much faster that reading the
original layout file since 1) the data are highly compressed so fewer bytes are read, and 2) the data
are sorted by layer so per-layer searches are more direct.

This page consists of an entry area, into which a source is entered. The source can be either a
path to a saved CGD file, or to a saved CHD file that contains geometry records. In either case,
the new CGD is created to reference the geometry data by offset into the source file.

During its lifetime, this type of CGD maintains an open file descriptor to its source file. Although
it is not likely, it may be possible to hit a system limit for open file descriptors if too many file
CGDs are simultaneously open.

remote server reference
The remote server reference tab corresponds to a “remote access” CGD. This type of CGD
obtains geometry data from a remote host which is running Xic in server mode (see 4.5). The
remote access CGD is a stub which links to a CGD in server memory, and data are returned via
interprocess communication calls.

This page provides separate entry areas for the host name, port, and remote CGD access name.
These correspond to the remote host running the Xic server, which must have a CGD in memory
(of any type). The new CGD will transparently link to the remote CGD, under a local access
name.

The Host name entry must contain the network host name of the machine running the server.
The Port number is optional, if not specified the port used defaults to 6115, which is the JANA
registered port number for the “xic/tcp” service. If the server is for some reason using a different
port number, that same port number must be entered. The access name of the CGD to reference
on the server must be entered into the Server CGD access name entry area.

During its lifetime, this type of CGD maintains an open socket to the server. Since the number of
connections is limited, it is best to free this type of CGD as soon as possible.

Below the notebook area is an entry for access name. This is the name under which the new CGD
will be listed in the Cell Geometry Digests panel. A default is provided that is guaranteed not to
conflict with an existing CGD.

The user can specify an access name. If the name is in use by an existing CGD, and the existing
CGD is not linked to a CHD, it will be destroyed, and the new CGD will be created and saved under
the same name. However, if the existing CGD is linked, it cannot be destroyed, and the CGD creation
will fail with an error message.

When the Apply button is pressed, if all goes properly the source will be processed, the new CGD
will be created, and added to the list in memory under the access name given.

8.12. THE LIBRARIES LIST BUTTON: LIST OPEN LIBRARIES 253

8.12 The Libraries List Button: List Open Libraries

The Libraries List button in the File Menu brings up the Libraries panel, which displays a listing
of libraries found along the present search path. To speed the search, only files with a “.1ib” extension
are checked for the library keyword at the top of the file, so library files that do not have a “.1ib”
extension will not appear in this list. The first column in the listing contains an icon which indicates
whether the library is open or closed.

Open libraries are searched to resolve cells when a layout file is being read. Closed libraries are
ignored. A library is opened if it is ever listed in a content window from the Path Files Listing panel,
or if a cell from that library is ever directly opened, such as by giving “/path/library cellname’ to the
Open command in the File Menu, or if opened with the Open/Close button (see below).

Libraries are an important component of the Xic cell resolution capability. Immediately after an
archive file has been read into the main database, the new hierarchy is traversed to identify cells that
are referenced in the hierarchy but were not defined in the file. First, the open libraries are searched,
and if an unresolved cell name matches a name in a library, the cell is read into memory through the
library. The library file itself is usually only an indirection mechanism, with the actual cells saved in
another archive file, or as native cell files, though it is also possible to define inline cells in the library
file.

If a cell is not resolved in the open libraries, then the search path is traversed for a native cell file
that matches the cell name. If one is found, it is read into memory. If not found, the unresolved cell
becomes an empty cell, and will otherwise behave normally in the database. A warning will be issued
in the log file when a cell is found to be unresolved.

The library mechanism is also available when a Cell Hierarchy Digest (CHD) is used for file access.
If the archive file source for the CHD contained unresolved references, the CHD will likewise have
unresolved references. These cells can be resolved when reading with the CHD if they match an open
library reference to a cell in an archive file. Presently, native and inlined cells can not resolve CHD
references, except when reading into the main database.

By default, a cell that can’t be resolved through a library is not an error, it will be handled appro-
priately. Processing will continue, with the non-references either being ignored (e.g., when flattening),
or converted to empty cells (when reading into the database), or propagated to output (when writing
output), depending on the operation.

However, if the Fail on Unresolved button in the Cell Hierarchy Digests pop-up, or equivalently
the ChdFailOnUnresolved variable is set, an unresolved cell will halt the operation with a fatal error.

When reading a library cell into memory, the hierarchy under the cell will also be read, unless the
subcell name already exists in memory in which case that subcell will not be read.

Cells read through the library mechanism have two internal attribute flags set, which affect their
behavior. First, the LIBRARY flag will, by default, prevent the cell from being written when a hierarchy
containing the cell is written to an archive file. This means that the file will not be self-contained, and
will require the presence of the (open) library to completely resolve all cells. Second, the IMMUTABLE
flag is set, which prevents a cell from being modified or renamed. Thus, library cells by default can not
be edited when opened in this manner.

The flags can be switched on and off for any cell with the Set Cell Flags panel from the Flags
button in the Cells Listing panel.

Libraries are listed and searched in the order opened, and shown in the listing. When resolving a
reference, the first match will apply, superseding any later entries. The libraries can be selected by

254 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

clicking on the entries. When a library is selected, the Open/Close and Contents buttons become
enabled, which will act on the selection. The selection has no other purpose.

The Open/Close button toggles the open state of the selected library. The Open/Close button
is active when a library is selected in the Libraries panel. Without a selection, the button is grayed.
Clicking the open/closed folder icon in the selected row will have the same effect as pressing the button.
Closing a library merely removes it from the search list, and any cells in memory from the library remain.

The Contents button is also activated when a library is selected in the Libraries panel. Pressing
Contents will pop up a listing of the contents of the selected library. The entries can be cells, archives,
or other libraries. The contents items can be selected by clicking on the names. When a selection is
active, the Open and Place buttons become active. The Open button will load the selected cell into
the main window. The Place button will pop up the Cell Placement Control panel, loaded with the
selected cell, with which the cell can be instantiated. If the selected item is another library or an archive
file, an intermediate ambiguity resolution pop-up will appear, and the user must select a cell to edit or
place.

The above is manifestly true only if the referenced cell is in an archive file. A native cell will always
be superseded by an inlined cell of the same reference name found earlier in the library search. Also,
the NoReadExclusive and AddToBack variables will affect cell name resolution as in a normal open.

The No Overwrite Lib Cells button tracks the state of the NoOverwriteLibCells variable. By
default, cells in memory that were read from a library can be overwritten by cells of the same name
subsequently read into memory from an archive or native cell file. If this button is set, library cells (with
the LIBRARY flag set) in memory will not be overwritten.

The contents listing is a drag source for drag/drop. Names from the list can be dropped into a
drawing window, with an effect similar to using the Open button.

When Xic is in CHD display mode, i.e., the Display button in the Cell Hierarchy Digests panel
is active, the Open and Place buttons in the contents window are not available. The Place button is
not available in the Xiv feature set.

8.13 The OpenAccess Libs Button: List OpenAccess Libraries

The OpenAccess Libs button will appear in the File Menu only if the OpenAccess plug-in has been
loaded, in which case there is a connection to an OpenAccess database on the current computer. Pressing
the OpenAccess Libs button brings up the OpenAccess Libraries panel. The release number of the
OpenAccess database software in use is shown in the panel above the listing of available libraries. The
listing displays the names of libraries specified in the OpenAccess 1ib.defs or cds.lib file.

Similar to the Libraries List panel, the first column in the listing contains an icon which indicates
whether the library is open or closed. The comments in that description apply to OpenAccess (OA)
cells opened in this manner as well. However, it is possible to list the content of OA libraries whether
or not they are open. Regular libraries must be open for the contents to be listed.

Open libraries are searched to resolve cells when a layout file is being read into Xic. Closed libraries
are ignored in this case. However, direct references to an OA library from an OA cell are always “open”.
The open and closed status is toggled by the Open/Close button in the panel, which acts on the entry
which has been selected by clicking on it.

The Open/Close button toggles the open state of the selected OA library. The Open/Close
button is active when a library is selected in the OpenAccess Libraries panel. Without a selection,

8.13. THE OPENACCESS LIBS BUTTON: LIST OPENACCESS LIBRARIES 255

the button is grayed. Clicking the open/closed folder icon in the selected row will have the same effect
as pressing the button. Closing a library merely removes it from the search list, and any cells in memory
from the library remain.

The second column in the listing indicates whether or not the library is writable from Xic. By default,
libraries created in Xic are writable from Xic, other libraries are not. This prevents, for example, Virtuoso
cells from being overwritten from Xic, which could cause loss of data (putting it mildly). The writability
of the currently-selected library can be toggled with the Writable Y /N button. Clicking on the Y or
N in the selected line will toggle the state, as if the button was pressed. Library writability can also be
set with the !oabrand command.

The Contents button is also activated when a library is selected in the OpenAccess Libraries
panel. Pressing Contents will pop up a listing of the cells in the selected OA library. The contents
items can be selected by clicking on the names. When a selection is active, the Open and Place buttons
become active. The Open button will load the selected cell into the main window. The Place button
will pop up the Cell Placement Control panel, loaded with the selected cell, with which the cell can
be instantiated.

One can specify whether to read and write physical or electrical data from OpenAccess, or both,
with the Data to use from OA radio button group. These buttons track the OaUseOnly variable. If

[13e))

this variable is set to “1” or any word starting with “p” or “P”, only physical data will be converted.

If set to “2” or any word starting with “e” or “E”, only electrical data (schematic and symbol) will be
converted. If set to anything else or not set, both physical and electrical data will be converted.

The restriction applies to conversion to and from OpenAccess, by any method in Xic.

When a cell is read into Xic from OA, the OA “layout” view is read as the physical cell data,
the “schematic” view is read as the schematic data, and the “symbol” view is read as the symbolic
representation. These need not all exist. The same view names apply when writing data to OpenAccess.

These view names are the defaults, as used by Cadence Virtuoso. However, any of the OaDe-
fLayoutView, OaDefSchematicView, and OaDefSymbolView variables can be defined to provide alternate
default view names.

When reading electrical info into Xic, a simulator-specific view is used for obtaining CDF (component
data, from Virtuoso) parameters and properties. By default, this view is named “HspiceD”, but another
view can be chosen by setting the variable OaDefDevPropView. The default choice provides compatibility
with Hspice, and therefor WRspice in fair measure. If is not an error if no HspiceD views are found.

These four variables have corresponding entry areas in the OpenAccess Defaults panel brought
up with the Defaults button. The text of the variables and entry areas track one another.

The contents listing is a drag source for drag/drop. Names from the list can be dropped into a
drawing window, with an effect similar to using the Open button.

When OpenAccess if available, the Open command and similar, when prompting for the name of
a file or cell to load, will recognize an OpenAccess library name followed by a cell name (two space-
separated words).

When Xic is in CHD display mode, i.e., the Display button in the Cell Hierarchy Digests panel
is active, the Open and Place buttons in the contents window are not available. The Place button is
not available in the Xiv feature set.

The Create button allows a new library to be created. When pressed, a pop-up appears, requesting
a name for the library, which can be any name allowed by OpenAccess. Pressing the Create button
in the pop-up will create the library, and its name will appear in the listing. The new library has

256 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

write permission from Xic. It will attach the default technology if set, otherwise there is no technology
associated with the new library, the user will probably need to use the Tech button to either create a
local tech database in the library, or link to the tech database in another library. New libraries can also
be created with the !oanewlib command.

The Tech button, which is un-grayed when a library is selected, brings up the OpenAccess Tech
panel described in 8.14. This panel allows control of the technology database associated with the library.
The !oatech command can also be used to set the technology database.

The Defaults button displays the OpenA.ccess Defaults panel described in 8.15, from which some
parameters used by the OpenAccess interface can be defined.

The Destroy button is un-grayed when a library is selected. When pressed, and after confirmation,
the selected library and all of its content will be destroyed. Presently, the library is removed from
the 1ib.defs file, but not otherwise touched. To reclaim the disk space used by the library, the user
can manually delete the corresponding directory. The !oadelete command can also be used to delete
libraries, and to delete cells in libraries.

8.14 The OpenAccess Tech Panel

The OpenAccess Tech panel is brought up with the Tech button in the OpenAccess Libraries
panel. This panel is only available when an OpenAccess database is being accessed with the plug-in, in
which case the OpenAccess Libs button appears in the File Menu.

In OpenAccess, every library is generally required to have an associated technology database. The
technology database contains information about layers, physical attributes, design constraints, etc.,
similar to the Xic technology file. The database can either be “attached” or “local”. When attached,
it references the technology database from another library. If local, the library contains its own private
technology database, to which other libraries can attach. This panel controls the technology database
for the library initially selected in the OpenAccess Libraries panel.

The settings indicate the current status of the library. The top line contains buttons and an entry
area that control attached technology. In libraries containing user cells, it is most common that an
attachment is used, typically to a library supplied by the foundry in a process design kit. In a typical
situation, an organization may make use of a single foundry process for several users and projects. It
is likely then that all of the user/project libraries attach to the one foundry library. In this case, the
Default Tech Library in the OpenAccess Defaults panel or equivalently the ja OaDefTechLibrary
variable can be set to the name of the foundry library. Then, new libraries will automatically attach
this library, and the user will never have to use the OpenAccess Tech panel.

If a database is currently attached. the Unattach button will be un-grayed, and the name of the
attached library will appear in the status area, just above the Dismiss button. Pressing Unattach
will (you guessed it) unattach the referenced database, and the Unattach button will become grayed.
One can reattach, or attach the technology from a different library, by entering the name of the target
library and pressing the Attach button. The Default button will enter the default tech library name
(if any) or the previous attachment name (if any) into the text entry area when pressed, and the entry
area is not grayed.

If there is no attachment, then the Create new Tech button will be un-grayed, along with the
Attach button. Pressing Create New Tech will create a new local technology database. The Attach
button will be grayed, as it is not possible to have an attached database if a local database is present.
The Destroy Tech button becomes un-grayed, and will destroy the local database when pressed.

8.15. THE OPENACCESS DEFAULTS PANEL 257

The !oatech command can perform may of the same operations.

8.15 The OpenAccess Defaults Panel

The OpenAccess Defaults panel is brought up with the Defaults button in the OpenAccess Li-
braries panel. This panel is only available when an OpenAccess database is being accessed with the
plug-in, in which case the OpenAccess Libs button appears in the File Menu.

Each of the entry areas tracks a variable that is used to set default behavior in the interface to the
OpenAccess database.

Library Path
This entry tracks the setting of the OalibraryPath variable. It can be set to a full path to a
directory. If a library to be accessed is not listed in the 1ib.defs (or cds.1ib) file, the system will
look for the library as a subdirectory of the directory path given. This allows use of OpenAccess
libraries that are hidden from other tools.

Default Library
This tracks the setting of the OaDefLibrary variable. It can be set to a library name found in the
lib.defs (or cds.lib) file, or to a subdirectory of the Library Path if any. This will be used
when reading from or writing to the OpenAccess database, if the library name is not otherwise
specified.

Default Tech Library
This tracks the setting of the OaDefTechLibrary variable. It can be set to a library name found
in the 1ib.defs (or cds.1ib) file, or to a subdirectory of the Library Path if any. When a library
is created, it will attach the technology database associated with the library name entered, if any.
If the named library has an attached technology, the same attachment will be applied to the new
library. Otherwise, the new library will attach the local technology database of the named library.

Default Layout View
This tracks the setting of the OaDefLayoutView variable. It specifies an alternate view name for
physical layout data. If not specified, the default layout view name is “layout”.

Default Schematic View
This tracks the setting of the OaDefSchematicView variable. It specifies an alternate view name
for electrical schematic data. If not specified, the default schematic view name is “schematic”.

Default Symbol View
This tracks the setting of the OaDefSymbolView variable. It specifies an alternate view name for
electrical symbol data. If not specified, the default symbol view name is “symbol”.

Default Properties View
This tracks the setting of the OaDefDevPropView variable. It specifies an alternate view name for
the simulator-specific view which (if present) provides values for certain device properties (from the
Common Design Framework (CDF) database). If not specified, the default simulator view name
is “HspiceD”. This specifies Hspice compatibility in Virtuoso, which is a good match for WRspice.

Dump CDF files while reading
This check box tracks the set/unset status of the OaDumpCdfFiles variable. When checked, when a
parameterized cell is opened in OpenAccess, the Common Design Framework (CDF) data for the
cell will be dumped to a file in the current directory. The file name is the cell name with a “.cdf”
extension. This is for development/debugging.

258 CHAPTER 8. THE FILE MENU: XIC INPUT/OUTPUT

8.16 The Quit Button: Exit Xic

Pressing the Quit button in the File Menu will exit Xic, after confirmation is there is unsaved work.

If there are modified cells, the pop-up described for the Save command appears. This displays a list
of the cells and hierarchies that have been modified, and allows the user to save them.

Chapter 9

The Cell Menu: Xic Cell Navigation
and Information

The Cell Menu contains the Push/Pop commands that enable pushing the viewing/editing context
into the hierarchy, and returning. Other commands provide information about cells and allow other
manipulations.

In Xic, there is a notion of the “current cell”. This is the cell hierarchy shown in the main window.
The current cell is acted on by many of the commands in Xic, and in particular only the current cell can
be modified. The current cell can be set in many ways, including using the Open command in the File
Menu, or the Cells Listing panel from the present menu. One can set the current cell to a subcell
with the Push command. This can be used in conjunction with the Info command in the View Menu
to push to the cell containing a selected object, to any depth in the hierarchy. The Pop command can
be used to climb back up the hierarchy to the original current cell.

Cell Menu
Label | Name | Pop-up Function
Push push none Make subcell the current cell
Pop pop none Make parent cell the current cell
Symbol Tables | stabs | Symbol Tables List of cell symbol tables
Cells List cells | Cells Listing List cells in memory
Show Tree tree Cell Hierarchy Tree | Display cell hierarchy

9.1 The Push Button: Push Editing Context

Pressing the Push button in the Cell Menu will push the editing context to a subcell. This means
that the subcell becomes the “current cell”, and editing operations can be performed in this cell. The
Pop command in the Cell Menu can be used to return to the original current cell.

If, when the Push button is pressed, the Info command is active and an object is selected that is
not in the current cell, The editing context will be pushed to the cell containing that object, which may
be arbitrarily deep in the hierarchy.

Otherwise, if any subcells are selected, the editing context will be pushed to the most recently selected
subcell. If no subcell has been selected, the user is asked to select one.

259

260 CHAPTER 9. THE CELL MENU: XIC CELL NAVIGATION AND INFORMATION

The pushed-to cell is displayed in true orientation, with or without the surrounding context shown
as set with the Show Context in Push button in the Main Window sub-menu in the Attributes
Menu or in the sub-window Attributes menu. The surrounding context is generally shown with reduced
illumination to visually differentiate the current cell from the context. The illumination percentage can
be set in the Window Attributes panel (from the Attributes Menu), or equivalently by setting the
ContextDarkPcnt variable to a value 1-100 (100 indicates no darkening).

The history of which cells have been pushed to and popped from is saved. Assume that previously
one has pushed into the hierarchy and popped back. When the Push button is active, pressing the
Enter key will push down one level and deactivate the button. Holding the Ctrl key while pressing Enter
will suppress the button deactivation, so that one can press Enter repeatedly to push deeper into the
hierarchy, following the last push sequence. Pressing Shift-Enter will cycle backwards, i.e., pop, with
button deactivation controlled by the Ctrl key as above. Unless the Ctrl key was up during the last
context change, the Push command is still active and one must press Esc before the cell can be edited.

If instead of pressing Enter a subcell is clicked on, the subcell is pushed to in the usual way, and all
past history below the present level is removed.

9.2 The Pop Button: Pop Context

Pressing the Pop button in the Cell Menu will pop the editing context back to the parent cell, if the
Push command has been employed.

If the user switches between physical and electrical mode while a push is active, the symbol currently
being edited remains the target, but the cell becomes top-level (not in a push) in the new mode. If the
original mode is returned to without editing a different cell, the push stack is retained. If a new cell is
edited in the new mode, through a push or otherwise, the original push context is lost. This context is
also lost if the Clear function in the Cells Listing from the Cell Menu is invoked.

9.3 The Symbol Tables Button: Switch Symbol Table

The Symbol Tables panel is brought up with the Symbol Tables button in the Cell Menu. A
“symbol” is a cell name, which applies to corresponding physical and electrical cells. A symbol table
is a container (a hash table) which holds cell definitions in memory for rapid access by name. Within
a symbol table, all cells have unique names, and an attempt to add a cell with an existing name will
simply overwrite the existing cell in the table. On program startup, a default symbol table is provided,
which will contain all cells unless the user intervenes.

It is possible to have multiple symbol tables available. This allows different versions of a cell with
the same name to exist in memory concurrently, though in different symbol tables. It also provides a
means for the user to ”start fresh” without actually destroying cells in memory.

This pop-up manages the symbol tables that are currently allocated. It is possible to add or delete
symbol tables, and to switch between the tables. The table in use contains the cell “memory” that is
currently available.

The option menu to the left provides the means for switching between existing tables. Each table
has a name, which is listed in the menu. Initially, only one table, named “main is available.

The Add button allows a new symbol table to be created and added to the list. The user is asked to
provide a name for the table. This name can be just about any text string, however if the name already

9.4. THE CELLS LIST BUTTON: CELL LISTING PANEL 261

exists in the table list, a new table is not created. The table corresponding to the name becomes the
current table. Although non-alphanumeric characters can be included in the name, this will require that
the name be double-quoted if used in the extended layer name syntax of layer expressions or the !layer
command.

The Clear button will clear and destroy the contents of the current table. After confirmation, if
there are modified cells, the user will be given a chance to save them to disk. If the user does not
abort, all cells in the current table will be destroyed, and the table will be empty except for the default
“noname” cell which will be read from disk if it exists, and this will become the current cell.

The Destroy button will destroy the current table, and its contents. It is not possible to destroy the
“main” table, the button is disabled when that table is current. After confirmation, if there are modified
cells, the user will be given a chance to save them to disk. If the user does not abort, all cells in the
table, and the table itself, will be destroyed. After the table is destroyed, one of the remaining tables
will become the new current table.

Note that when switching between tables, the current cell in use at the time of the switch is saved,
and recalled when the user returns to that table.

9.4 The Cells List Button: Cell Listing Panel

The Cells List button in the Cell Menu is used to bring up the Cells Listing panel, providing a
listing of cell names. The cells listed are dependent upon the context, as will be described, and can be
filtered for various criteria. The panel can be used to select cells for editing or placement, among other
useful features.

If the Display button in the Cell Hierarchy Digests panel is active, i.e., the program is in hierarchy
display mode, the cells listing is obtained from the CHD currently being displayed. In this case, filtering
(to be described) does not apply. Otherwise, the listing is obtained from the cells presently in memory,
in the current symbol table.

To the right of the Dismiss button is a drop-down menu which provides a choice or electrical or
physical display mode for the cells list. The initial selection will be the same as the current display
mode. The cells listed will have been created in the selected mode.

The display of the cell names is paged. The number of entries displayed per page can be set with
the ListPageEntries variable, or defaults to 5000 if this variable is unset (variables can be set with the
!set command). If the listing requires multiple pages, a page selection menu will appear to the left of
the Dismiss button.

Cell names are listed in columns. The top level cells (those that are not used as subcells of another
cell) are shown with an asterisk ‘“*’, and a plus sign ‘+’ appears for modified cells.

The listing is a drag source, cell names can be dragged and dropped into drawing windows, to display
or edit that cell.

9.4.1 Cells Listing Command Buttons

A cell name can be selected by clicking on the name. Only one name can be selected at once, and it will
be highlighted.

A number of buttons appear along the left edge of the panel. Without a selection, these buttons are
grayed. Selected names are acted on by buttons of the panel, which become active when a selection is

262 CHAPTER 9. THE CELL MENU: XIC CELL NAVIGATION AND INFORMATION

made. The buttons enable functionality described below.

Clear
The Clear button is available when listing cells from memory, but not in CHD display mode.

This button will clear top-level cells (those not used as a subcell by any other cell in memory,
and marked with an asterisk in the list) or all cells from memory. If a top-level cell is selected in
the text area, that cell and its descendents which are not referenced outside of the hierarchy are
removed from memory, after confirmation. There is no “undo” of this operation. If the cell is not
top-level in both electrical and physical modes, the command exits with a warning message. If no
cell is selected, the entire symbol table will be cleared (after confirmation). The user is first given
a chance to save any unsaved work. The current editing cell becomes the next cell given on the
command line, or the default “noname” cell if no other cell was specified. This command can not
be undone, and anything cleared is very definitely gone.

Tree
The Tree button is available in normal and CGD display modes, and is active when a cell name
is selected.

The Tree button is used to bring up the Cell Hierarchy Tree pop-up, which can also be initiated
with the Show Tree button in the Cell Menu (for the current cell). From the Tree button in the
Cells Listing panel, the Cell Hierarchy Tree pop-up will display the hierarchy of the selected
cell.

Open
The Open button is available when listing cells from memory, but not in CHD display mode. The
button is active when a cell name is selected.

Pressing the Open button will load the selected cell into the main window, for display or editing.
Cells can also be dragged from the listing and dropped into drawing windows, with a similar effect.

Place
The Place button is available when listing cells from memory, but not in CHD display mode, and
is not available in the Xiv feature set. When available, it is active when a cell name is selected.

Pressing the Place button will cause the selected cell to become the current master cell, and the
Cell Placement Control panel will appear. Instances of the master can be created by pressing
the Place button in the Cell Placement Control panel, then clicking on locations in a drawing
window.

Copy
The Copy button is available when listing cells from memory, but not in CHD display mode, and
is not available in the Xiv feature set. When available it is active when a cell name is selected.

The Copy button allows an existing cell to be duplicated under a new name. The user must
explicitly save the copied cell to disk if the new cell is not placed in a hierarchy saved as an archive
file, otherwise the copied cell will be lost when the program is exited, though the new cell is marked
as “modified” so the user will be prompted to save it when exiting. Pressing Copy will cause a
dialog box to appear asking for a new name for the cell. A copy will be made if the user enters a
valid new name, which must not already be in use. The new name will become highlighted in the
cell listing.

Any cell can be copied. Copies will always be created with the IMMUTABLE and LIBRARY flags
(see below) unset.

Replace
The Replace button is available when listing cells from memory, but not in CHD display mode,

9.4.

THE CELLS LIST BUTTON: CELL LISTING PANEL 263

and is not available in the Xiv feature set. When available, it is active when a cell name is selected,
and at least one cell instance is selected in a drawing window.

The button allows cell instances selected in a drawing window to be replaced with instances of the
selected cell name. Pressing the button brings up a confirmation pop-up. A ‘yes’ response will
initiate the replacement. The current transform is ignored when replacing cells from this panel,
which is different from the Replace function in the Cell Placement Control panel from the
side menu.

When a cell is replaced, the placement of the new cell is determined in physical mode by the setting
of the Origin/Lower Left buttons in the Cell Placement Control panel (though it may not
be visible). When Lower Left is active, the lower left corner of the replacing cell corresponds to
the lower left corner of the replaced cell, otherwise the cell’s origins are used. In electrical mode,
the reference terminal (the first connection point) is always placed at the same location as the
reference terminal of the replaced cell.

Rename

The Rename button is available when listing cells from memory, but not in CHD display mode,
and is not available in the Xiv feature set. When available, it is active when a cell name is selected.

The Rename button allows a cell in memory to be given a new name. All references to the cell
throughout the symbol table will be changed to call the new name. This is useful to avoid name
clashes in designs intended to be merged with other designs. Note that the newly named cell
should be explicitly saved as a file if in native format, or it may be lost when the user exits. The
cell will be saved in the hierarchy if an ancestor cell is written to an archive file. The user must
remember to save any cells which call the renamed cell (the MODIFIED flag is set for these cells,
so that the user is warned at program exit).

Pressing the Rename button brings up a dialog box asking for the new name. The renaming is
effective if a valid new name, which must not already be in use, is given.

Leading and trailing white space is stripped from the name, and any non-empty name is accepted,
though a warning is issued if the name contains a character that may cause trouble. The GDSII
specification allows alpha-numerics plus ‘$’ (dollar sign), ‘-’ (underscore), and ‘?” (question mark).
A character not in this list will trigger the warning. The user should stick to valid cell names when
possible.

Cells with the IMMUTABLE flag (see below) set can not be renamed. Cells with the LIBRARY
flag set can be renamed, which will unset the LIBRARY flag.

Search

The Search button is available in normal and CGD display modes.

In normal display mode, when the Search button is pressed, the listing will initially contain only
cells in the hierarchy of the current cell, selections in the listing are ignored. If the user clicks in a
drawing window displaying the current cell, the listing will then contain only cells with instances
that appear under the click location. If the user drags button 1 to define a rectangle in a drawing
window displaying the current cell, only cells that have instances that appear in the drag rectangle
will be listed. These operations can be repeated, the listing will be updated after each operation.
Pressing the Search button again to deactivate it will revert to listing all cells in the current
symbol table.

In CHD display mode, when the Search button is pressed, the listing will contain cells found in
the CHD, including and under the cell currently being displayed in the main window. Clicking or
dragging in the window will restrict the cell listing as in the normal display mode.

The label at the top of the Cells Listing will show the search area coordinates in microns, unless
the Infolnternal variable is set, in which case internal units are given.

264 CHAPTER 9. THE CELL MENU: XIC CELL NAVIGATION AND INFORMATION

Flags
The Flags button is available in normal mode only.

Cells in the main database have two flags which can be modified by the user. The IMMUTABLE
flag indicates that the cell is read-only, and can not be modified or renamed. The LIBRARY flag
indicates that the cell was read through the library mechanism. Cells with the LIBRARY flag
set are not included when writing output, unless the Include Library Cells check box in the
Export Control panel is active, or equivalently the KeepLibMasters variable is set.

Cells read into the database through the library mechanism will have both the IMMUTABLE and
LIBRARY flags set. The panel that appears when the Flags button is pressed allows the user to
change the flag states, and corresponding cell behavior.

If no cell name is selected, all of the cells listed in the Cells Listing will be displayed in the Set
Cell Flags panel, along with colored indicators of the status of the two flags. If a cell name is
selected, only the selected cell will be listed in the Set Cell Flags panel upon pressing Flags.
Clicking on the indicators will toggle the indicators. The indicators can also be set globally with
the buttons above the listing. The Apply button must be pressed to actually change the flags in
the cells.

Cell flags can also be listed and set/unset with the !setflag command.

If the IMMUTABLE flag of the current cell is set, user interface editing features are disabled. The
Enable Editing button in the Edit Menu can also be used to set the state of the IMMUTABLE
flag of the current cell.

Setting the LIBRARY flag is a means to prevent cell definitions from appearing in the output file
when the hierarchy is written. It is occasionally necessary to use this feature to enforce resolution
of cells from another source in a subsequent read, perhaps from a different library or another
layout.

It is also useful on occasion to create a customized library cell, which will become part of the
user’s cell collection. In this case, the LIBRARY and IMMUTABLE flags for the library cell would
be unset, and the cell modified to the user’s needs, and the user’s cell hierarchy written to disk.
On subsequent reads, the user’s version of the cell, which will exist in the file, will satisfy the
references, rather than the version from the library.

Another way to accomplish this, perhaps somewhat safer, would be to copy the library cell to a
new name (using Copy), and reference instances of the copy instead of the library cell. Copies do
not have the flags set (unless reset by the user).

Info
The Info button is available in normal and CGD display modes.

In normal display mode, the Info button produces a pop-up that provides information about
subcells and other objects, as from the Info button in the View Menu. If a cell name has been
selected in the listing, the Cell Hierarchy Tree pop-up, or in a drawing window, pressing the
Info button will display a window containing information about the cell. This information includes
the size, number of objects and subcells, and cells for which the selected cell is a subcell. If this
button is pressed when there is no selected cell name, the info window will also appear, but contain
no data. In any case, when the info window is visible, clicking on objects in drawing windows will
reload the window with information about the object.

In CHD display mode, information contained in the CHD is shown, for a selected cell or the
displayed top-level cell if there are no selections. The information in the CGD is dependent upon
the parameters used when the CHD was created.

Show
The Show button is available in normal and CGD display modes.

9.4. THE CELLS LIST BUTTON: CELL LISTING PANEL

The Show button enables a mode where cell instances are highlighted in the main drawing window.
If a cell name has been selected in the listing, all instances of the cell will be outlined in the
highlighting color. The outlines apply to all instances of the cell, regardless of the level in the
hierarchy or expansion status. This facilitates finding instances of a cell in a complex hierarchy.
The display will track the currently selected cell name in the listing. If no selection, no highlighting
is shown, until a selection is made. Only one cell can be highlighted at once. The number of

instances found of the selected cell will be printed in the prompt area.

Filter

This button brings up the Cell List Filter panel, with which one can limit the cell list to those
with specific attributes. After specifying the filtering criteria, pressing the Apply button in the

panel will update the listing. The next section describes this panel.

9.4.2 Cell Filtering

The Cell List Filter panel appears when the Filter button in the Cells Listing panel, which is
obtained from the Cell Menu. This provides criteria that enables a cell to be listed in the Cells

Listing.

Each entry contains two check boxes, with logic such that at most one can be set at a time. Each
is assiciated with some assertion about a cell. If the left box is checked, the cell will be listed if the
assertion is not true. If the right box is checked, the cell will be listed if the assertion is true. If neither

is checked, the assertion is not tested.

A cell will be listed if all tests indicate that the cell should be listed. If no tests are done, the cell

will be listed by default. The available tests are described below.
Immutable
List cells with the IMMUTABLE flag set.

not Immutable
List cells with the IMMUTABLE flag not set.

Via sub-master
List cells that are standard via sub-masters (physical only).

not Via sub-master
List cells that are not standard via sub-masters (physical only).

Library
List cells with the LIBRARY flag set.

not Library
List cells with the LIBRARY flag not set.

PCell sub-master
List cells that are parameterized cell sub-masters (physical only).

not PCell sub-master
List cells that are not parameterized cell sub-masters (physical only).

Device
List cells that are devices (electrical only).

266 CHAPTER 9. THE CELL MENU: XIC CELL NAVIGATION AND INFORMATION

not Device
List cells that are not devices (electrical only).

Top level
List cells that are top level (not used as a subcell).

not Top level
List cells that are not top level.

Modified
List cells that are modified, i.e., have been changed in some way.

not Modified
List cells that are not modified.

With alt
List cells that have an alternate-mode cell defined, i.e., in the physical listing, list cells if an
electrical mode cell of the same name exists.

not With alt
List cells that have no alternate-mode cell defined.

Reference
List reference cells. These are special cells that reference another cell hierarchy.

not Reference
List cells that are not reference cells.

Parent cells
This makes use of the text entry area on the same line which can contain a list of cell names. List
cells that use at least one of the listed cells as subcells. If the text entry is empty, list cells that
contain subcells.

not Parent cells List cells that do not contain any of the cells listed in the text area as subcells, or
list cells that contain no subcells if the text area is empty.

Subcell
This makes use of the text entry area on the same line which can contain a list of cell names. List
cells that are subcells of any of the listed cells. If the text area is empty, list cells that are used as
a subcell of another cell in memory.

not Subcell
List cells that are not a subcell of any of the cells listed in the text area. If the text area is empty,
list cells that are not used as a subcell.

With layers
This makes use of the text entry area on the same line which can contain a list of layer names.
List cells that contain objects on any of the layers listed. If the text area is empty, list cells that
contain any geometry.

not With layers
List cells that do not have any geometry on the listed layers. If the text area is empty, list cells
that have no geometry.

9.4. THE CELLS LIST BUTTON: CELL LISTING PANEL 267

With flags
This makes use of the text entry area on the same line which can contain a list of flag names (see
9.4.3). At least one flag must be given or the test is ignored. List cells that have one or more of
the listed flags set.

not With flags
The text area must have at least one entry or the test is ignored. List cells that do not have any
of the listed flags set.

From filetypes
This makes use of the text entry area on the same line which can contain a list of file type names
from among “none”, “native”, “cgx”, “cif”, “gds”, “oasis”, and “openaccess”. Only the first
two letters are needed. List cells that were read from one of the listed file types. Internally

generated cells will have type “none”. If the list of types is empty, the test is ignored.

not From filetypes
List cells that were not read from the listed file types. The test is ignored if the type list is empty.

When the Apply button is pressed, the cell listing in the Cells Listing panel will be updated to
reflect the given filtering criteria.

The filtering state can be saved to and recalled from five registers, through the Store and Recall
menus. There are separate register sets for electrical and physical display modes.

The filter state can also be expressed as a string, using keywords. Presently, this is used only by
the ListCellsInMem script function. Each keyword or keyword/value pair represents a clause, and the
displayed cells are the logical AND of the clauses given. The available clauses are described below.

immutable

List cells with the IMMUTABLE flag set.

notimmutable
List cells the IMMUTABLE flag not set.

viasubm
List cells that are standard via sub-masters (physical only).

notviasubm
List cells that are not standard via sub-masters (physical only).

library
List cells with the LIBRARY flag set.

notlibrary
List cells with the LIBRARY flag not set.

pcellsubm
List cells that are parameterized cell sub-masters (physical only).

notpcellsubm
List cells that are not parameterized cell sub-masters (physical only).

device
List device cells.

268 CHAPTER 9. THE CELL MENU: XIC CELL NAVIGATION AND INFORMATION

notdevice
List cells that are not device cells.

toplev
List cells that are not used as a subcell, i.e., top-level cells.

nottoplev
List cells that are used as a subcell, i.e., not top-level.

modified
List cells with the MODIFIED flag set.

notmodified

List cells with the MODIFIED flag not set.

withalt
List cells that have an alternate-mode cell defined, i.e., in the physical listing, keep cells if an
electrical mode cell of the same name exists.

notwithalt
List cells without an alternate-mode cell defined.

reference
List reference cells.

notreference
List cells that are not reference cells.

parent "cellnamel cellname2 ..."
This keyword requires a following quoted list of cell names. List cells that use at least one of the
cells in the list as subcells. If the cell list is empty, specified by two quote marks "", list cells that
have subcells.

notparent "cellnamel cellname2 ..."
This keyword requires a following quoted list of cell names. List cells that do not have any of the
listed cells as subcells. If the cell list is empty, specified by two quote marks "" list cells that have
no subcells.

subcell "cellnamel cellname2 ..."
This keyword requires a following quoted list of cell names. List cells that are used as a subcell in
one or more of the listed cells. If the cell list is empty, specified by two quote marks "", list cells
used as a subcell (same as nottoplev)

nosubcell "cellnamel cellname2 ..."
This keyword requires a following quoted list of cell names. List cells that are not used as a subcell
in any of the listed cells. If the cell list is empty, specified by two quote marks "", list cells that
are not used as a subcell (same as toplev).

layer "layernamel layername2 ..."
This keyword requires a following quoted list of layer names. List cells that have objects on one
or more of the listed layers. If the layer list is empty, specified by two quote marks "", list cells
that have some geometry on any layer.

notlayer "layernamel layername2 ..."
This keyword requires a following quoted list of layer names. List cells that do not have geometry
on any of the listed layers. If the layer list is empty, specified by two quote marks "", list cells that
have no geometry.

9.4. THE CELLS LIST BUTTON: CELL LISTING PANEL 269

flag "flagnamel flagname2 ..."
This keyword requires a following quoted list of flag names (see 9.4.3). List cells that have at least
one of the listed flags set. If the list is empty, the clause is ignored.

notflag "flagnamel flagname2 ..."
This keyword requires a following quoted list of flag names. List cells that have none one of the
listed flags set. If the list is empty, the clause is ignored.

ftype "filetypel filetype2 ..."
This keyword requires a following quoted list of file types, from “none”, “native”, “gds”, “cgx”,

“oasis”, “cif”, and “openaccess”. Only the first two letters of the type names are necessary.
List cells that were read from one of the listed file types. Internally generated cells will have type
“none”. If the list is empty, the clause is ignored.

notftype "filetypel filetype2 ..."
This keyword requires a following quoted list of file types, as above. List cells that were read from
a file type that is not in the list. If the list is empty, the clause is ignored.

Examples:
notlibrary layer "M1 M2" parent celll notparent cell2

List cells that are not library cells and that contain objects on M1 or M2, and contain celll but don’t
contain cell2.

subcell maincell layer BASE notlayer VIA notparent ""

List subcells of maincell that have objects on layer BASE but have no objects on layer VIA and that
have no subcells.

9.4.3 Cell Flags

Cells in memory contain a number of flags. Most of these are used internally and can not be set by the
user. All set flags can be seen in the Info windows when cell data are shown.

The table below lists all flags, with a brief description.

270 CHAPTER 9. THE CELL MENU: XIC CELL NAVIGATION AND INFORMATION

Flag Name \ User Set \ Set When, or Description ‘

BBVALID N Cell bounding box is valid

BBSUBNG N A subcell has unknown bounding box
ELECTR N Cell contains electrical data

SYMBOLIC N Cell has active symbolic representation
CONNECT N Connectivity info is current

GPINV N Inverted ground plane current

DSEXT N Devices and subcircuits extracted
DUALS N Physical/electrical duality established
UNREAD N Created to satisfy unsatisfied reference
COMPRESSED | N Save hierarchy in compressed form
SAVNTV N Save in native format before exit
ALTERED N Cell data were altered when read
CHDREF N Cell is a reference

DEVICE N Cell represents a device symbol
LIBRARY Y Cell is from a user library

IMMUTABLE Y Cell is read-only

OPAQUE Y Cell content is ignored in extraction
CONNECTOR Y Cell is a connector

SPCONNECT Y SPICE connectivity info is current
USERO Y User flag 0

USER1 Y User flag 1

PCELL N Cell is a PCell sub- or super-master
PCSUPR N Cell is a PCell super-master

PCOA N Cell is a PCell sub-master from OpenAccess
PCKEEP N PCell sub-master read from file
STDVIA N Cell is a standard via sub-master

The flags with a Y in the second column can be set by the user, with the SetCellFlag script function
and in other places, depending on the flag.

The first two user-modifiable flags are normally controlled by Xic, however it is possible for the user to
change their state through the Flags button in the Cells Listing panel, and through the SetCellFlag
script function.

LIBRARY
This flag is set for cells that were read into memory through the library (see 8.12) mechanism. By
default, these cells are not included when a hierarchy is written to disk.

IMMUTABLE
This indicates that the cell is read-only and can’t be edited. This will be set for cells read into
memory through the library mechanism.

The remaining flags are completely under control of the user, they are not set by Xic. These are set via
the properties mechanism, from the Cell Property Editor (Flags property) or with the SetCellFlag
script function. Using a property to control these flags provides persistence when saved to disk.

OPAQUE
The physical contents of the cell should be ignored in extraction.

CONNECTOR
The cell is a via or other connector that contains no devices.

9.5. THE SHOW TREE BUTTON: SHOW CELL HIERARCHY 271

USERO, USER1
Convenience flags for the user. Xic does not use these, but they may be useful in some application.

9.5 The Show Tree Button: Show Cell Hierarchy

The Show Tree button in the Cell Menu brings up the Cell Hierarchy Tree window, which presents
a tree diagram representing cell hierarchy. Each subcell is initially shown unexpanded, but these can
be expanded by clicking on the expander symbol. Subcells can be unexpanded by clicking again in the
same location. The glyph used to represent the expander is dependent on the GTK theme in use, and
may take different forms. Clicking elsewhere in the line will select the subcell name, for use by the Info,
Open, and Place buttons.

When the main drawing window is in CHD display mode, meaning that the Display button in
the Cell Hierarchy Digests panel is engaged, the Cell Hierarchy Tree will display cells from the
displayed CHD, rooted at the default cell of the CHD. Otherwise, the listing represents cells in memory,
rooted at the current cell. The Tree button in the Cells Listing panel can also be used to display the
Cell Hierarchy Tree, rooted at other cells in memory or in the displayed CHD.

Pressing the Info button will display information about the selected cell. In CHD display mode, this
is information stored in the CHD when the CHD was created. In normal mode, this is the same Info
window available in the View Menu. Initially, this window will contain information about the selected
cell, though subsequent clicks in a drawing window will generate info about other objects.

The Open button is only available in normal display mode. Pressing Open will open the selected
cell in the main drawing window, and make it the current cell for editing and selections.

The Place button, also available in normal display mode only, will pop up the Cell Placement
Control panel, loaded with the selected cell. This enables instantiation of the cell. The Place button
is not available in the Xiv feature set.

Pressing the Update button will rebuild the tree internally and redisplay. The tree does not auto-
matically track changes in the cell hierarchy due to editing, the Update button can be used to update
the tree manually if needed.

The label at the bottom of the panel provides an indication of the complexity of the tree. The
total “nodes” would be the number of lines in the display if all items were expanded. The depth is the
maximum hierarchy depth found.

The listing is a drag source. Cell names can be dragged and dropped into drawing windows, to
display or edit that cell.

272 CHAPTER 9. THE CELL MENU: XIC CELL NAVIGATION AND INFORMATION

This page intentionally left blank.

Chapter 10

The Edit Menu: Edit Layout

The Edit Menu contains commands which control aspects of layout editing, such as transformations and
other settings, and commands that bring up panels that control cell placement and flattening, property
editing, and other functions.

The table below summarizes the commands that appear in the Edit Menu, including the internal
command name and the command function.

Edit Menu
Label Name | Pop-up | Function
Enable Editing cedit | none Enable/disable editing mode
for current cell
Setup edset | Editing Setup Show Editing Setup panel
PCell Control pcctl | PCell Control Set pcell options
Create Cell crcel | none Create new cell
Create Via crvia | none Create a standard via
Flatten flatn | Flatten Hierarchy Flatten hierarchy
Join/Split join | Join or Split Objects Control join/split operations
Layer Expression | lexpr | Evaluate Layer Expression | Control layer expression eval-
uation
Properties prpty | Property Editor Edit properties
Cell Properties cprop | Cell Property Editor Edit cell properties

10.1 Cell, Instance, and Object Properties

A property consists of an integer and a corresponding text string. Every database object, including cells,
instances, and geometrical objects, has the native ability to accept properties, though this is enabled
selectively. Properties are saved in the design data file along with the item to which it is attached.

The Property Editor, which is brought up with the Properties button in the Edit Menu, provides
the primary means of property manipulation of objects found in the current cell. The Cell Property
Editor, which is obtained with the Cell Properties button in the same menu, provides the primary
means for manipulating properties of the current cell itself.

Properties can be applied to physical objects and cells by the user, using the user’s property number
and format, to suit tye user’s purposes. This is fine, as long as the user’s property numbers are outside of

273

274 CHAPTER 10. THE EDIT MENU: EDIT LAYOUT

the range reserved by Xic. Other properties are set by Xic for internal use such as to store the grid used
for the layout