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CHAPTER 3: Unified I-V Model

The development of separate model expressions for such device operation regimes as

subthreshold and strong inversion were discussed in Chapter 2. Although these

expressions can accurately describe device behavior within their own respective region of

operation, problems are likely to occur between two well-described regions or within

transition regions. In order to circumvent this issue, a unified model should be synthesized

to not only preserve region-specific expressions but also to ensure the continuities of

current and conductance and their derivatives in all transition regions as well. Such high

standards are kept in BSIM3v3.2.1 . As a result, convergence and simulation efficiency

are much improved.

This chapter will describe the unified I-V model equations. While most of the parameter

symbols in this chapter are explained in the following text, a complete description of all I-

V model parameters can be found in Appendix A. 

3.1 Unified Channel Charge Density 
Expression

Separate expressions for channel charge density are shown below for subthreshold

(Eq. (3.1.1a) and (3.1.1b)) and strong inversion (Eq. (3.1.2)). Both expressions are

valid for small Vds. 



Unified Channel Charge Density Expression

3-2 BSIM3v3.2.2 Manual Copyright © 1999 UC Berkeley

 (3.1.1a)

where Q0 is

 (3.1.1b)

 (3.1.2)

In both Eqs. (3.1.1a) and (3.1.2), the parameters Qchsubs0 and Qchs0 are the channel

charge densities at the source for very small Vds. To form a unified expression, an

effective (Vgs-Vth) function named Vgsteff is introduced to describe the channel

charge characteristics from subthreshold to strong inversion

 (3.1.3)

The unified channel charge density at the source end for both subthreshold and

inversion region can therefore be written as

 (3.1.4)

Figures 3-1 and 3-2 show the smoothness of Eq. (3.1.4) from subthreshold to

strong inversion regions. The Vgsteff expression will be used again in subsequent

sections of this chapter to model the drain current. 
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Figure  3-1.   The Vgsteff function vs. (Vgs-Vth) in linear scale.

Figure  3-2.   Vgsteff function vs. (Vgs-Vth) in log scale. 
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Eq. (3.1.4) serves as the cornerstone of the unified channel charge expression at

the source for small Vds. To account for the influence of Vds, the Vgsteff function

must keep track of the change in channel potential from the source to the drain. In

other words, Eq. (3.1.4) will have to include a y dependence. To initiate this

formulation, consider first the re-formulation of channel charge density for the

case of strong inversion

 (3.1.5)

The parameter VF(y) stands for the quasi-Fermi potential at any given point y,

along the channel with respect to the source. This equation can also be written as

 (3.1.6)

The term ∆Qchs(y) is the incremental channel charge density induced by the drain

voltage at point y. It can be expressed as

 (3.1.7)

For the subthreshold region (Vgs<<Vth), the channel charge density along the

channel from source to drain can be written as

 (3.1.8)
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A Taylor series expansion of the right-hand side of Eq. (3.1.8) yields the following

(keeping only the first two terms)

 (3.1.9)

Analogous to Eq. (3.1.6), Eq. (3.1.9) can also be written as

 (3.1.10)

The parameter ∆Qchsubs(y) is the incremental channel charge density induced by

the drain voltage in the subthreshold region. It can be written as

 (3.1.11)

Note that Eq. (3.1.9) is valid only when VF(y) is very small, which is maintained

fortunately, due to the fact that Eq. (3.1.9) is only used in the linear regime (i.e. Vds

≤2vt).

Eqs. (3.1.6) and (3.1.10) both have drain voltage dependencies. However, they are

decupled and a unified expression for Qch(y) is needed. To obtain a unified

expression along the channel, we first assume

 (3.1.12)

Here,  ∆Qch(y) is the incremental channel charge density induced by the drain

voltage. Substituting Eq. (3.1.7) and (3.1.11) into Eq. (3.1.12), we obtain

Q Q
A V

nv
chsubs y chsubs

bulk F y

t
( )

( )
( )= −0 1

Q Q Qchsubs y chsubs chsubs y( ) ( )= +0 ∆

∆Q
A V

nv
Qchsubs y

bulk F y

t
chsubs( )

( )= − 0

∆ ∆ ∆
∆ ∆

Q
Q Q

Q Q
ch y

chs y chsubs y

chs y chsubs y
( )

( ) ( )

( ) ( )
=

+



Unified Mobility Expression

3-6 BSIM3v3.2.2 Manual Copyright © 1999 UC Berkeley

 (3.1.13)

where Vb = (Vgsteff + n*vt)/Abulk. In order to remove any association between the

variable n and bias dependencies (Vgsteff) as well as to ensure more precise

modeling of Eq. (3.1.8) for linear regimes (under subthreshold conditions), n is

replaced by 2. The expression for Vb now becomes

 (3.1.14)

A unified expression for Qch(y) from subthreshold to strong inversion regimes is

now at hand

 (3.1.15)

The variable Qchs0 is given by Eq. (3.1.4).

3.2 Unified Mobility Expression

Unified mobility model based on the Vgsteff expression of Eq. 3.1.3 is described in

the following.
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(mobMod = 1) (3.2.1)

To account for depletion mode devices, another mobility model option is given by

the following

(mobMod = 2) (3.2.2)

To consider the body bias dependence of Eq. 3.2.1 further, we have introduced the

following expression

(For mobMod = 3) (3.2.3)

3.3 Unified Linear Current Expression

3.3.1 Intrinsic case (Rds=0)

Generally, the following expression [2] is used to account for both drift and

diffusion current
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 (3.3.1)

where the parameter une(y) can be written as

 (3.3.2)

Substituting Eq. (3.3.2) in Eq. (3.3.1) we get

 (3.3.3)

Eq. (3.3.3) resembles the equation used to model drain current in the strong

inversion regime. However, it can now be used to describe the current

characteristics in the subthreshold regime when Vds is very small (Vds<2vt).

Eq. (3.3.3) can now be integrated from the source to drain to get the

expression for linear drain current in the channel. This expression is valid

from the subthreshold regime to the strong inversion regime

 (3.3.4)
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3.3.2 Extrinsic Case (Rds > 0)

The current expression when Rds > 0 can be obtained based on Eq. (2.5.9)

and Eq. (3.3.4). The expression for linear drain current from subthreshold

to strong inversion is:

 (3.3.5)

3.4 Unified Vdsat Expression 

3.4.1 Intrinsic case (Rds=0)

 To get an expression for the electric field as a function of y along the

channel, we integrate Eq. (3.3.1) from 0 to an arbitrary point y. The result is

as follows

 (3.4.1)

If we assume that drift velocity saturates when Ey=Esat, we get the

following expression for Idsat
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Let Vds=Vdsat in Eq. (3.3.4) and set this equal to Eq. (3.4.2), we get the

following expression for Vdsat

 (3.4.3)

3.4.2 Extrinsic Case (Rds>0)

The Vdsat expression for the extrinsic case is formulated from Eq. (3.4.3)

and Eq. (2.5.10) to be the following

 (3.4.4a)

where
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The parameter λ is introduced to account for non-saturation effects.

Parameters A1 and A2 can be extracted.

3.5 Unified Saturation Current Expression

A unified expression for the saturation current from the subthreshold to the strong

inversion regime can be formulated by introducing the Vgsteff function into Eq.

(2.6.15). The resulting equations are the following 

 (3.5.1)
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 (3.5.5)

 (3.5.6)

 (3.5.7)

3.6 Single Current Expression for All 
Operating Regimes of Vgs and Vds
The Vgsteff function introduced in Chapter 2 gave a unified expression for the linear
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proposed for MOSFET modeling [22-24]. The smoothing function used in BSIM3
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 (3.6.2)

Similarly, Eq. (3.5.7) now becomes

 (3.6.3)

The Vdseff expression is written as

 (3.6.4)

The expression for Vdsat is that given under Section 3.4. The parameter δ in the

unit of volts can be extracted. The dependence of Vdseff on Vds is given in Figure 3-

3. The Vdseff function follows Vds in the linear region and tends to Vdsat in the

saturation region. Figure 3-4 shows the effect of δ on the transition region between

linear and saturation regimes. 
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Figure  3-3.   Vdseff vs. Vds for δ=0.01 and different Vgs.    

Figure  3-4.   Vdseff vs. Vds for Vgs=3V and different δ values.
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3.7 Substrate Current

The substrate current in BSIM3v3.2.1 is modeled by

 (3.7.1)

where parameters α0 and β0 are impact ionization coefficients; parameter α1

improves the Isub scalability.

3.8 A Note on Vbs

All Vbs terms have been substituted with a Vbseff expression as shown in Eq.

(3.8.1). This is done in order to set an upper bound for the body bias value during

simulations. Unreasonable values can occur if this expression is not introduced. 

(3.8.1)
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